Review on Carbotanium

Review on
Aditya Chandurkar
Titanium processing
Carbon fibre
Titanium Carbon fibre bonding
Future Work
• Smart material
• How it can be made
• Where can it be applied
• Titanium is named after the Titans, the powerful sons of the
earth in Greek mythology.
• Titanium is the forth abundant metal on earth crust (~ 0.86%)
after aluminum, iron and magnesium.
• Have similar strength as steel but with a weight nearly half of
• Not found in its free, pure metal form in nature but as oxides,
i.e., ilmenite (FeTiO3) and rutile (TiO2)
Production of Titanium alloys
• Extraction process – Kroll
• Melting Process
Induction Skull Melting
• Casting process – Investment
Casting, laser fabrication
• Forming Process – rolling,
extrusion, forging
• Heat treatment
Physical Properties of TI
Crystal Structure HCP (below 882.5 C)
BCC (above 882.5 C)
Atomic diameter
4.54 g. cm-3
Melting Point
Experiences allotropic transformation (α-> β) at 882.5 C
Highly react with oxygen, nitrogen, carbon and hydrogen
Difficult to extract -> expensive
High strength and toughness
Used mainly in wrought forms for advanced applications
where cost is not critical
Classification of TI alloys
• Commercially pure (CP) titanium alpha and near alpha titanium
• Alpha-beta titanium alloys
• Beta titanium alloys
Different crystal structures and properties allow manipulation of heat
treatments to produce different types of alloy microstructures to suit
the required mechanical properties.
Beta Ti alloys
• Beta stabilizers are sufficiently added to retain a fully β structure (avoid
martensite formation) when quenched from the β phase field
Metastable β alloys : Mo Eq. <25
Stable β alloys : Mo Eq. 25-40
Beta titanium alloys
• β titanium alloys possess a BCC crystal structure, which is readily coldworked (than HCP α structure) in the β phase field
• Microstructure after quenching contains equiaxed β phase
• After solution heat treating + quenching giving very high strength (up
to 1300-1400 MPa)
• Metastable β Ti alloys are hardenable while stable β Ti
alloys are non-hardenable
Composition and applications of
β titanium alloys
Beta alloys
High strength to density ratio
Low modulus
High strength/high toughness
High fatigue strength
Good deep hardenability
Low forging temperature
Strip producible
Cold formable
Easy to heat
Excellent corrosion resistance
Excellent combustion resistance
High density
Low modulus
Poor low high temperature properties
Small processing window
High formulation cost
High springback
Microstructural instabilities
Interstitial pick up
Carbon fibre
• Collection of thin stand of material mostly composed of carbon atoms.
• The carbon atoms are bonded together in microscopic crystals that are
more or less aligned parallel to the long axis of the fiber.
• The crystal alignment makes the fiber incredibly strong for its size.
Several thousand carbon fibers are twisted together to form a yarn,
which may be used by itself or woven into a fabric
• The fabric is combined with epoxy is molded into shape to form various
composite material
Classification of Carbon Fiber
• Carbon fibers are classified by the tensile modulus of the fiber.
• Tensile modulus is a measure of how much pulling force a certain
diameter fiber can exert without breaking
• Ultra-high-modulus (modulus >450Gpa)
• High modulus (modulus between 350-450Gpa)
• Intermediate Modulus (modulus between 200-350Gpa)
• Low Modulus and high tensile (modulus < 100Gpa, tensile strength >
• Super high tensile (tensile strength > 4.5Gpa)
Raw Materials
• 90% of the carbon fibers produced are made from polyacrylonitrile
• remaining 10% are made from rayon or petroleum pitch
• All of these materials are organic polymers, characterized by long
strings of molecules bound together by carbon atoms
The Manufacturing
Part Chemical and Part Mechanical
Treating the surface
• Advantages
• Very low weight
• High impact tolerance
• Insensitive to
• Reduced maintenance
• Long service life
Oxidize readily between 600-700 C
Very Expensive
Complicated to produce
High electrical conductivity of
graphite particles
Ti-Carbon Fibre Bonding
• Using Adhesive
• Ion bean enhanced deposition
Defense applications such as tank shields, Fighter plans.
Aerospace applications
Aircraft Applications
Automotive applications
Future work
• Captain America’s Shield
• Wolverines Claw
• Body Armour

similar documents