Lysbilde 1

Report
The German Wind Resource and
Norwegian Hydro – Interesting
Possibilities
Lars Audun Fodstad, SVP, Statkraft Energy AS,
BMU
5th July 2010, Berlin
1
90%
264
35%
WITHIN RENEWABLES
IN EUROPE
No.
RENEWABLE
ENERGY
POWER AND DISTRICT
HEATING PLANTS
OF NORWAY’S
POWER
GENERATION
3200 20
...IN MORE THAN
EMPLOYEES..
COUNTRIES
FROM STATKRAFT’S KEY AREAS
European Flexible Generation
and Market Operations
Develop and optimize hydro
portfolio in Norway and
Sweden, including small
hydro in Norway
Evaluate European growth
opportunities for flexible
hydropower, including
France
Build and upgrade gasfired
power plants in core
markets (Continent/UK)
side 3
THE NORTH SEA AREA
WIND POWER DEVELOPMENT – 2020 SCENARIO
Offshore:
40 000 MW
Total onshore/offshore:
100 000 MW
Creating a Wind Belt
onshore/offshore from
UK via France, Belgium,
The Netherlands,
Germany, Denmark and
Southern Sweden
side 4
Høy konsentrasjon av vindkraft
i vårt nærområde
GRID AND GRID INTEGRATION
- MAIN CHALLENGES
Infrastructure Development
Connecting VarRES to
Load centres
Flexibility options
Storage facilities
Enabling market development
See entsoe’s TYNDP
Handling the wind production’s variability
Wind power developing from a minor to a main part of the
production portfolio with dispatch priority
Creates new need for flexibility in the other parts of the
electricity system
side 5
TRANSMISSION CHALLENGES
Bringing 40 000 MW onshore
HVAC can and will be used for
relatively small capacities over
shorter distances
HVDC has to be used for larger
capacities and longer distances –
the new VSC technology is able
to operate without a grid backup
Bringing 100 000 MW to the
load centres
Upgrading AC overhead lines
HVDC cable connections?
Source: entsoe TYNDP
side 6
Difficult, but it has to be done
THE WIND PRODUCTION’S VARIABILITY
Page 7
FLEXIBILITY CHALLENGES
Ref. TradeWind 2020
Variations in wind power production
Europe looked upon as one bus bar
Max.
54 % of installed capacity
Min.
9 % of Installed capacity
Difference
45 % of installed capacity or 95 GW
Less than four days between top and bottom
Regional example: The Netherlands as one bus bar
Max.
Min.
Rises from
side 8
93 % of installed capacity
0 % of installed capacity
7 to 90 % of installed capacity (6 GW in 2030)
in six hours (time resolution for wind data)
FLEXIBILITY OPTIONS
Production
Nuclear
Fossil fired, gas and coal
Reservoir based hydro
Storage
Pumped Storage
CAES
Batteries/EV
DSM/Smart Grids
Connecting and further develop the Norwegian
hydro resource to deliver a significant part of the
needed flexibility?
side 9
EUROPEAN HYDRO FLEXIBILITY – SLIDE I
Reservoir based hydro power in the production mix
In general used for storage and peak power production
In Norway developed for storage and base load
Key factors for hydro as storage and peak power
Annual Energy Production, inflow TWh
Reservoir Capacity
TWh
Installed Capacity
MW
Hydro Energy Production, Storage Capacity and
Rated Power (1998)
UCTE
86 TWh
Norway
112,6 TWh
NORDEL, ex.NO 76,2 TWh
Page 10
57 TWh
84,1 TWh
38,6 TWh
49 GW
27,3 GW
19,1 GW
EUROPEAN HYDRO FLEXIBILITY – SLIDE II
Ratio between Annual Production/Installed
Capacity, i.e. the number of hours necessary to
deliver Annual Production
UCTE
Norway
NORDEL, ex.NO
1755 h
4125 h
3980 h
Ratio between Reservoir Capacity/Installed
Capacity, i.e. the number of hours necessary to
empty the reservoirs without any inflow
UCTE
Norway
NORDEL, ex.NO
Page 11
1160 h
3080 h
2020 h
NORWEGIAN HYDRO FLEXIBILITY OPTIONS –
SLIDE I
Hydro
Installed capacity 28 GW
Can contribute a lot to balancing, regulation, peak and back-up
production except for some hours at winter peak load
Example: The existing 1 GW connection to Denmark
Expansion possibilities in Southern Norway 7 - 8 GW
Converting from base load to peak load production by installing
additional generators in the existing power stations
Pumped storage
Installed capacity 1 GW
Mainly built for seasonal pumping
Expansion possibilities in Southern Norway 15 - 20 GW
Storage capacity for continuous pumping 120 hours
Using only existing reservoirs both upstream and downstream
side 12
NORWEGIAN HYDRO FLEXIBILITY OPTIONS –
SLIDE II
Norway has alone close to 50 % of the hydro
reservoir capacity in Europe
To take advantage of this huge flexibility resource it
is necessary to connect it to nodes in the wind belt
side 13
POWER FLOW
From the wind belt to Norway
High wind generation
Insufficient transmission capacity to the load centres
Low demand
Low, zero or negative prices
From Norway via the wind belt to the load centres on
the continent and UK
Low wind generation
The transmission capacity to the load centres are idle
High demand
High prices
side 14
ADDITIONAL INFRASTRUCTURE - BENEFIT
The only additional infrastructure needed is the
connection between the wind belt and the Norwegian
hydro resources
Benefit from interaction between wind and hydro
resources
Taking care of excess wind power production otherwise lost
Delivering balancing, reserve, peak and back-up power
Reducing the need for fossil fired reserves both running and
ready to start
Reducing emissions
side 15
1
6
EXCHANGE WITH NORWAY – EXAMPLE I
Import of excess wind power
10000 MW in 1500 hours
= 15 TWh
Storage in Norwegian reservoirs
5000 MW reduced ordinary hydro production = 7,5 TWh
5000 MW pumping, total efficiency factor 0,7 = 5,25 TWh
Export of ”Peak Power”
10000 MW in 1275 hours
= 12,75 TWh
Alternative fossil fired ”Peak Power”
Result: 12,75 TWh saved RES and reduced emissions
Page 17
EXCHANGE WITH NORWAY – EXAMPLE II
Import of excess wind power
10000 MW in 1000 hours
= 10 TWh
Storage in Norwegian reservoirs
5000 MW reduced ordinary hydro production = 5,0 TWh
5000 MW pumping, total efficiency factor 0,7 = 3,5 TWh
Export of ”Peak Power”
10000 MW in 850 hours
= 8,5 TWh
Alternative fossil fired ”Peak Power”
Result: 8,5 TWh saved RES and reduced emissions
Page 18
EXISTING NORWEGIAN PUMPED STORAGE
Hydro Developments with Pumped Storage
Sira-Kvina, Duge power station, seasonal storage:
2x100 MW reversible units
Head 215 m
Reservoir capacity 1 400 Million m3
Tunnel length approx. 13 km
Inaugurated 1978
Ulla-Førre, Saurdal power station, seasonal storage, see also
following slides:
4x160 MW, two of them reversible units
Head 450 m
Reservoir capacity 3 105 Million m3
Inaugurated
Page 19
SOME POSSIBLE PROJECTS
Expansion Project Tonstad power station
Further Expansion Possibilities in Sira-Kvina and
several other Norwegian Hydro Power Systems
located in South Norway
Page 20
SIRA-KVINA MAIN DATA
• 7 power stations - 16 units
• Total capacity 1760 MW
• Annual production ~ 6 TWh
• Reservoir capacity 5,6 TWh
RESERVOIRS – POWER STATIONS
All Connections Reservoirs Power Plants are Tunnels
All Power Plants are in
Caverns
All outlets into reservoir or
sea
Total Head Developed
930/900 m to the sea
Page 22
WATERWAY
EXPANSION PROJECT TONSTAD - SLIDE I
Head 430 m
Tunnel length 11 km
Existing installation
4x160 MW
1x320 MW
Expansion
2x480 MW reversible units
Page 24
EXPANSION PROJECT TONSTAD - SLIDE II
SIRA-KVINA FURTHER EXPANSION
Tonstad power station
Additional capacity 960 MW reversible
Total capacity then 2880 MW (1920 MW reversible)
Solhom power station
Existing capacity 200 MW
Additional capacity 1000 MW reversible
Page 26
EXCHANGE WITH NORWAY - GERMAN REPORT
100% erneuerbare Stromversorgung bis 2050:
klimaverträglich, sicher, bezahlbar
Vorläufige Fassung vom 5. Mai 2010
Page 27
“Zusammenfassung und Empfehlungen” I
Die Ergebnisse der Szenarien für 2050 im Überblick
– Das Potenzial an regenerativen Energiequellen reicht
aus, um den Strombedarf in Deutschland und Europa
vollständig zu decken.
– Dabei kann Versorgungssicherheit gewährleistet
werden: Zu jeder Stunde des Jahres wird die
Nachfrage gedeckt. Voraussetzung ist der Aufbau
der entsprechenden Erzeugungskapazitäten und die
Schaffung von Möglichkeiten für den Ausgleich
zeitlich schwankender Einspeisung von Strom durch
entsprechende Speicherkapazitäten.
Page 28
“Zusammenfassung und Empfehlungen” II
Die Ergebnisse der Szenarien für 2050 im Überblick
– Eine vollständig nationale Selbstversorgung ist zwar
darstellbar, aber keineswegs empfehlenswert.
– Die Kosten der Stromversorgung können durch einen
regionalen Verbund mit Dänemark und Norwegen
oder einen größeren europäisch-nordafrikanischen
Verbund im Vergleich zur nationalen Selbstversorgung
erheblich gesenkt werden.
Page 29
“Zusammenfassung und Empfehlungen” III
Die Ergebnisse der Szenarien für 2050 im Überblick
– Eine anspruchsvolle Energiespar- und
Effizienzpolitik senkt die ökonomischen und
ökologischen Kosten der Versorgung mit
erneuerbaren Energien.
Page 30
“Zusammenfassung und Empfehlungen” IV
Die Ergebnisse der Szenarien für 2050 im Überblick
– Der derzeitige Bestand an konventionellen
Kraftwerken
ist als „Brücke“ hin zu einer regenerativen
Stromversorgung ausreichend. Bei einer
durchschnittlichen betrieblichen Laufzeit von
35 Jahren kann der Übergang schrittweise gestaltet
werden. Hierfür muss der jährliche Zubau an
regenerativen Erzeugungskapazitäten bis etwa 2020
in moderatem Umfang weiter gesteigert werden.
Page 31
The German Wind Resource and Norwegian Hydro
A PERFECT MATCH?
Page 32
THANK YOU!
Lars Audun Fodstad
Direct +47 24 06 74 30
Mobile +47 913 01 785
[email protected]
Statkraft Energy AS
Lilleakerveien 6 P.O.Box 200 Lilleaker
NO-0216 Oslo, Norway
www.statkraft.com
Page 33

similar documents