How to optimize comfort in stereoscopic displays

Report
How to optimize comfort in
stereoscopic displays
Martina Rasch, Manuel Wyss and
Florian Zoubek
Motivation
[1]
2
Vergence-Accommodation Conflict
[2]
3
Vergence/Accommodation-Coupling
[3]
4
How to measure comfort?
[4]
[5]
5
Random Dot Stereograms
[6]
vs.
6
Disparity
Disparity Manipulation
Depth Range
7
Disparity
Disparity Manipulation
Comfort Zone
Depth Range
8
Disparity
Disparity Manipulation
Comfort Zone
Depth Range
9
Disparity
Disparity Manipulation
Comfort Zone
Depth Range
10
Creating a Metric
vs.
11
Quality Model
12
Disparity Frequency Model
*Different for each frequency
Response [JND]
5
4
3
2
1
Disparity [arcmin]
[7]
13
Pipeline
[8]
14
Further Applications
Standard stereo
Backward-compatible stereo
[9]
15
Disparity Mapping in Post-Production
[10]
16
Algorithms
View-interpolation
[11]
Multi-rigging
[12]
17
Method
Disparity
map
extraction
Disparity
map
optimization
Computing
Correspondence
Features
Minimize
error
and
maximize
comfort
18
Disparity
manipulation
Warping
Disparity map extraction
[13]
19
Disparity optimization
[14]
20
Disparity manipulation with warping
21
[15]
Temporal constraints
[16]
22
Applications
[17]
23
Thank you for
your attention!
List of Figures
[1] Oculus Rift: http://pixelvolt.com/wp-content/uploads/2013/11/Oculus-Rift-GDC-2013.jpg
[2] Figure 1, Hoffman, David M., et al. "Vergence–accommodation conflicts hinder visual performance and cause visual fatigue."
Journal of vision 8.3 (2008).
[3] Adaptation of Figure 1, Lambooij, Marc, et al. "Visual discomfort and visual fatigue of stereoscopic displays: a review." Journal of
Imaging Science and Technology 53.3 (2009): 30201-1.
[4] Questionaire: selfmade (Shown questionnaire created by David M. Hoffman et. al)
[5] Stopwatch: http://www.flickr.com/photos/purplemattfish/3020016417/
[6] Random dot stereogram: http://www.jrg3.net/presentations/random_dot.jpg
[7] Slide 10, http://people.csail.mit.edu/pdidyk/projects/LuminanceDisparityModel/LuminanceDisparityModel.pptx
[8] Figure 4, Didyk, Piotr, et al. "A perceptual model for disparity." ACM Transactions on Graphics (TOG). Vol. 30. No. 4. ACM, 2011.
[9] Figure 11, Didyk, Piotr, et al. "A perceptual model for disparity." ACM Transactions on Graphics (TOG). Vol. 30. No. 4. ACM, 2011.
[10] Adaptation of Figure 10, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics
(TOG) 29.4 (2010): 75.
[11] View interpolation: http://research.microsoft.com/en-us/um/people/larryz/ZitnickSig04.pdf
[12] Multi-rig: http://www.3dfocus.co.uk/3d-news-2/3d-technology/mio3d-push-for-stereo-rigs-with-3-or-more-cameras/6282
[13] SIFT: http://groups.csail.mit.edu/graphics/classes/CompPhoto07/PPT/12_Phototourism.key/SIFT_fade.png
[14] Adaptation of Figure 1, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics
(TOG) 29.4 (2010): 75.
[15] Adaptation of Figure 14, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics
(TOG) 29.4 (2010): 75.
[16] Figure 9, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on Graphics (TOG) 29.4
(2010): 75.
[17] Adaptation of Figures 11 and 12, Lang, Manuel, et al. "Nonlinear disparity mapping for stereoscopic 3D." ACM Transactions on
Graphics (TOG) 29.4 (2010): 75.
25

similar documents