Quantum-Dot Lasers

Report
Quantum-Dot Lasers
Nanoelectronics term project
R91543013
徐維良
指導教授:劉致為
Outline






半導體雷射與Quantum dot laser
Quantum dot laser的製造
Quantum dot laser的特色
高能的Quantum dot laser
1.3 µm Quantum Dot Lasers
結論
半導體雷射
LASER:Light Amplification by
Stimulated Emission of
Radiation
必要的元件:
--Gain medium
--Optical feedback
•利用Quantum dot transition 的放射結合來放大.
•Pumping over p-n junction by current injection
•利用水晶面來反射以共振
增益與尺寸
Quantum Dot的好處
Discrete energy level : high density of states
no temperature dependence
Quantum Dot的好處
reduced diffusion
→ no diffusion to surfaces
reduced active volume
→ low absorption, low inversion densities
refractive index decoupled from carrier density
→ no chirp
Quantum dot laser的製造
MBE-Growth
Integration of Quantum dot layer into
the active zone of a semiconductor
laser
Dot density>10^10cm^-2
改良Carrier Confinement
•SSLs as 布拉格反射體
•改良Carrier Confinement
Quantum dot laser的active
region對於thermal losses較
敏感
改良Carrier Confinement
不同區域的short period superlattices 之結合
mini bandgap 的部分重合導致effective barrier height的增加
溫度與Quantum dot laser
Operation temperature > 210 °C
Reduced wavelength shift:
QW: 0.33 nm/K
QDots: 0.17 - 0.19 nm/K
Quantum dot laser 之增益
•About 3 times broader gain spectrum due to dot size
distribution
•Much larger tuning range for wavelength tuning of DFB
lasers
Single mode Emitting Quantum dot
lasers
•使用E-Beam製造
• Wavelength selection by grating
periode (SMSR = 52 dB)
• Ith < 20 mA for all periods
(.λ = 33 nm)
溫度穩定性
•Stable single mode emission
•No mode hopping
•Single mode operation over
194K temperature range
•三倍大的頻寬
•溫度飄移少一倍
Quantum Dot 與Quantum Well
• Reduced threshold current density for L > 2.5 mm (cross over)
• Lower optical confinement for QDots, but inversion condition is
relaxed
Material Gain of Q-Dot and QWLaser
波長對溫度敏感度
Quantum dot laser有較
低的溫度敏感度
△λ/ △ T
= 0.35 nm/K for QWLs
= 0.23 nm/K for QDLs
高能的Quantum dot laser
• 2 mm × 100 µm broad area laser
• Record value of 4 W cw output power
• Wall plug efficiency > 50 % at 1 W
高能的Quantum dot laser
• Emission by fundamental mode
• High temperature stability
• Low wavelength shift (for QWs 50% higher)
高能的Quantum dot laser
•在20°C 與 80°C 的區域中,每增
加一瓦的能量,只有多百分之二十
的電流
•高的characteristic
temperature
T= 110 K up to 110 °C
1.3 µm Quantum Dot Lasers
 替代昂貴的InP-based material system
 Growth on GaAs substrates,
--便宜、 大的WAFER面積(6", 8")
 special dot 優點
--low threshold density
--broad gain function
--low temperature sensitivity
InAs/GaInAs Quantum Dots
•InAs embedded in GaInAs buffer layers
– Room temperature emission at 1.3 µm
– High quantum dot density
• Growth rate: r(GaAs) = 1 µm/h
r(InAs) = 140 to 260 nm/h
• Growth temperature: T = 510 °C
1.3 µm Quantum Dots
1.3 µm Quantum Dots
• High dot densities
for InAs on GaInAs
• 35 - 40 meV line
width
• 60 meV level
distance
• Longer wavelength
at higher In content
1.3 µm Quantum Dot Laser
•6 InAs/GaInAs Q-Dot layers
with 50 nm GaAs spacers
• 650 nm cavity width
• GRINSCH with SSL
structure
• 1,6 µm Al0.4Ga0.6As
cladding layers
1.3 µm Quantum Dot Laser
Laser emission by
fundamental mode
• 800 µm resonator
length possible
without mirror
coating
•
Threshold Current Density
• For 6 Q-Dot layers threshold doubles but 800 µm device length
possible
• For 3 Q-Dot layers low threshold current density (100 - 200
A/cm2)but limitation to about 2.5 mm resonator length
Modal Gain of Quantum dot Layers
• L = shortest resonator
length at which laser
operation is still possible
on the ground state
• About 2 - 3 cm-1 modal
gain per dot layer
• Best results with 6 dot
layers achieved
Tuning Range of QDot-Lasers
• Linear correlation of grating
period and emission avelength
– Tuning range > 35 nm
– Basic device properties are
almost identical over the whole
tuning range
→ A further extension of the
tuning range to longer and
shorter wavelengths should be
possible
高頻特性
• Large modulation bandwidth
for 800 µm long HR/HR
coated device
• 3dB bandwidth thermally
limited
結論
• Quantum dot laser 的好處
– 低很多的 inversion carrier density
(低 threshold current)
– 對溫度較不敏感
– 有大的頻寬
– low chirp
結論
• 已實體化的 Quantum dot laser
– 980 nm single mode emitting laser with
extremely high temperature
stability (Top = 15 °C - 210 °C)
– 980 nm high power lasers (4 W cw output power,
> 50% wall plug eff.)
– 1.3 µm laser with high device performance
(Ith = 4.4 mA, Top. > 150°C)
Reference
http://www.compoundsemiconductor.net/articles/news/6/3/21/1
http://fibers.org/articles/fs/6/12/3/1
http://fibers.org/articles/fs/6/11/3/1
http://www.ee.leeds.ac.uk/nanomsc/presentations/module2presen
tation.htm
http://www.indianpatents.org.in/ach/quant.htm
http://newton.ex.ac.uk/aip/physnews.595.html
http://www.aip.org/enews/physnews/2003/
http://www.elec.gla.ac.uk/groups/nanospec/dotlaser.html
http://www.shef.ac.uk/uni/academic/NQ/phys/research/semic/qdresgroup.html#Laser
Reference
http://optics.org/articles/ole/7/8/2/1
http://feynman.stanford.edu/Html-CQED/sqdl.html
http://www.hinduonnet.com/thehindu/2001/09/13/stories/081300
06.htm
http://www.phy.ncu.edu.tw/so/Chinese/Quantum%20Dots/Search
%20subject1.htm
http://www.sciam.com.tw/read/readshow.asp?FDocNo=121&DocN
o=191
L.A.Coldren and S.W.Corzine, Diode Lasers and Photonic Integrated
Circuits (Wiley, New York 1995).
M.Asada, Y.Miyamoto, and Y.Suematsu, IEEE J.Quantum Electron.
QE-22, 1915(1986).
Reference
•R. P. Mirin, J. P. Ibbetson, K. Nishi, A. C. Gossard, and J. E. Bowers, Appl.
Phys. Lett.67, 3795 (1995).
•K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, Appl. Phys. Lett. 74, 1111
(1999).
•V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Yu. Egorov, A.
V.Lunev, B. V. Volovik, I. L. Krestnikov, Yu. G. Musikhin, N. A. Bert, P. S.
Kop’ev, andZh. I. Alferov, N. N. Ledentsov, and D. Bimberg, Appl. Phys.
Lett. 74, 2815 (1999).
•D. L. Huffaker, G. Park, Z. Zou, O. B. Shchekin, and D. G. Deppe, Appl.
Phys. Lett.73, 2564 (1998).
•Y.M. Shernyakov, D.A. Bedarev, E.Y. Kondrateva, P.S. Kopev, A.R. Kovsh,
N.A. Maleev, M.V. Maximov, S.S. Mikhrin, A.F. Tsatsulnikov, V.M. Ustinov,
B.V. Volovik,A.E. Zhukov, Z.I. Alferov,N.N.Ledentsov, D. Bimberg, Electron.
Lett, 35, 898, (1999)
•G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, Electron. Lett. 35,
1163(1999).
•L. F. Lester, A. Stintz, H. Li, T. C. Newell, E. A. Pease, B. A. Fuchs, and K.
J. Malloy,IEEE Photon. Technol. Lett. 11, 931 (1999).

similar documents