iso TOC cube - University of Calgary

Report
iso TOC cube: new innovations from a
familiar company
Advances in Stable Isotope Techniques & Applications, University of Calgary
Tuesday June 4th, 2013
Arthur Kasson, IRMS Product Manager
elementar Americas Inc.
1
• Compact, bench-top IRMS
• 100% high purity stainless steel horizontal
vacuum housing
• Extremely high vacuum conductance means
only a single turbomolecular pump is required
• 100V dynamic range linear analyzer
• Robust thorium coated ionization filament
• 10 year warranty of Faraday Collectors
• Modular electronics for simple maintenance
• High stability electromagnet with no need
for water cooling
• Fully automated analysis and diagnostics
through IonVantage software
• Market leading performance specifications
2
IsoPrime100 Specifications
IRMS
Sensitivity
Absolute sensitivity of CO2
(molecules/ion)
850
1200
DI mode
CF mode
H3+ correction factor
< 8.0 ppm/nA
H3+ factor stability
< 0.03 ppm/nA/hr
Mass Resolution
(10% valley definition)
100
Reference Gas
Gas
Isotope
Internal Precision
1σ ‰
Linearity
‰ / nA
CO2
δ13C
δ18O
≤ 0.06
≤ 0.06
≤ 0.02
≤ 0.04
N2
δ15N
≤ 0.06
≤ 0.02
H2
δD
≤ 0.20
-
3
Total Organic carbon (TOC) IRMS
Key Applications
The main applications for TOC are
environmental forensics and
ecology
1. River nutrient and food webs
2. Agricultural run off into water
systems
3. Soil dynamics
4. Water quality analysis and
pollution
5. Marine & estuarine dynamics
4
Total Organic carbon (TOC) IRMS
Unique Capabilities
1. Variable sample feeding
2. High temperature digestion with
matrix separation (up to 1200C)
3. Highly stable operation and
results
4. NDIR detection of TOC in the
ppb to percentage range (can also
measure TNb)
5. Ability to remove excess salt via
ash crucible
5
Iso TOC cube
Current Techniques
Preparation off-line
Large sample sizes, complicated methodology, specialised equipment,
analysis by dual inlet, slow
EA-IRMS
Concentration by evaporation or lyophilisation, analysis by EA-IRMS
Does not work well when high concentrations of inorganic salt are present
Wet oxidation TOC-IRMS
Using UV or persulfate for oxidation of the sample.
Few samples can be analysed before halide gasses corrode reaction vessel,
salt deposition in flow lines, consumption of halogen trap
6
Iso TOC Cube
Elementar have over 30 years of experience in manufacturing TOC analysers
The vario TOC cube is the latest version in the cube format
7
Iso TOC Cube
Features
Integrated 50 position liquid sampler with integrated automated sample feeder
8
Iso TOC Cube
Features
Screwless casing with easy access to 5 sides of the instrument
Simple maintenance with immediate access to all parts
9
Iso TOC Cube
Features
Multiport valve
Furnace
Halogen trap
Syringe pump
Drying tube
Acid reservoir
10
Iso TOC Cube
Ball & Clamp Fittings
Use of ball & clamp fittings throughout the instrument for simple
maintenance with no need for tools
11
Iso TOC Cube
Benefits during IRMS
• Iso TOC cube uses direct analysis of TIC & TOC
• Does not use subtraction method (TC - TIC = TOC)
• High temperature oxidation furnace for combustion of C to CO2
• Does not use wet oxidation (persulfate/UV oxidation)
• O2 carrier gas used
• Does not use synthetic air
• Combustion tube containing CuO @ approx 950°C
• Does not use expensive platinum
• Requires interface for IRMS for coupling to IsoPrime100
12
IRMS Interface – Trap TIC/TOC CO2
13
Iso TOC Cube
IRMS Interface Introduction
14
Iso TOC Cube
CO2 Column Trapping
15
IRMS Interface – Release Trapped CO2
16
Iso TOC Cube
CO2 Column Release to the IRMS
17
System configuration
•
Exchange from O2 to He carrier gas
•
Purge and trap adsorption column for peak
focusing (no liquid nitrogen needed)
•
reduction furnace to remove interference
species and residual oxygen
18
Iso TOC Cube
~1ppm C Precision
13/05/2011 (7.33 to 10.24)
TOC-IRMS Settings
C-concentration ~ 1ppm
Sample volume ~ 3.5ml
CO2 Adsorption by Silica gel
Trap 550 uA
IR bridged (1/16th" Haler)
Peak Ave time N = 285
He Purge = 30s
Sample
CitricAcid1
CitricAcid2
CitricAcid3
CitricAcid4
CitricAcid5
CitricAcid6
CitricAcid7
CitricAcid8
CitricAcid9
CitricAcid10
δ13C
-18.04
-17.27
-17.23
-17.28
-17.48
-17.15
-17.24
-17.24
-17.24
-17.23
nA
5.30
4.65
4.60
4.37
4.25
4.48
4.53
4.43
4.38
4.46
Ave
SD
-17.26
0.089
19
Iso TOC Cube
~0.15ppm Water
13/05/2011 (10.41 to 13.15)
TOC-IRMS Settings
C-concentration ~ 0.15ppm
Sample volume ~ 3.5ml
CO2 Adsorption by Silica gel
Trap 550 uA
Sample
DI water 5
DI water 6
DI water 7
DI water 8
DI water 9
DI water 10
nA
δ13C
0.35
0.36
0.32
0.37
0.33
0.32
-33.70
-34.19
-34.06
-34.64
-34.54
-34.74
Ave
SD
-34.31
0.40
IR bridged (1/16th" Haler)
Peak Ave time N = 285
He Purge = 30s
20
Iso TOC Cube
TOC-IRMS Accuracy
10/05/2011 (7.38 to 16.12)
TOC-IRMS Settings
C-concentration ~ 10ppm
sample vol ~ 1.5ml
CO2 Adsorption by Silica gel
Trap 200 uA
IR bridged (1/16th" Haler)
Peak Ave time N = 285
He Purge = 30s
Sample
ANU Sucrose 1
ANU Sucrose 2
ANU Sucrose 3
ANU Sucrose 4
Citric Acid 1
Citric Acid 2
Citric Acid 3
Citric Acid 4
RossmSugarA1
RossmSugarA2
RossmSugarA3
RossmSugarA4
Glutamic AcidA1
Glutamic AcidA2
Glutamic AcidA3
Glutamic AcidA4
Glutamic AcidB1
Glutamic AcidB2
Glutamic AcidB3
Glutamic AcidB4
Testsugar1
Testsugar2
Testsugar3
Testsugar4
RossmSugarB1
RossmSugarB2
RossmSugarB3
RossmSugarB4
ANU Sucrose 5
ANU Sucrose 6
ANU Sucrose 7
ANU Sucrose 8
nA
6.33
6.29
6.35
6.44
6.48
6.47
6.4
6.35
6.35
6.18
6.26
6.13
6.28
6.16
6.13
6.04
5.95
5.98
5.91
6.29
6.02
6.11
6.01
6.13
5.98
5.98
5.99
5.96
5.96
5.93
5.89
5.88
δ13c
-11.65
-10.72
-10.57
-10.52
-16.18
-16.24
-16.17
-16.10
-15.92
-15.90
-15.94
-15.90
-26.19
-26.21
-26.11
-26.21
-27.89
-27.92
-27.95
-27.98
-25.57
-25.55
-25.56
-25.56
-25.16
-25.18
-25.13
-25.13
-10.80
-10.57
-10.53
-10.54
Ave
std dev
Actual
-10.55
0.04
-10.50
-16.17
0.06
-16.00
-15.92
0.02
-16.30
-26.18
0.05
-26.10
-27.94
0.04
-28.40
-25.56
0.01
-26.00
-25.15
0.02
-25.70
-10.5467
0.02
-10.50
21
Iso TOC Cube
TOC-IRMS Accuracy
Experimental δ13C
0
-25
-20
-15
-10
-5
0
-5
y = 1.0239x + 0.2852
R² = 0.9989
-10
-15
Theoretical δ13C
-30
-20
-25
-30
22
Stability (precision) and memory effect
Signal
Absolute
shift
Injection 2,3,4
d13C stdev
Injection 3,4,5
d13C stdev
[nA]
[‰]
[‰]
[‰]
5
5
5
5
12
12
12
12
12
12
12
12
16
16
16
55
55
55
55
55
55
11.14
30.10
38.62
37.70
23.08
37.56
18.43
10.92
30.34
37.79
14.55
23.00
38.87
17.51
15.65
73.07
62.30
15.41
16.10
11.16
5.61
0.05
0.03
0.19
0.15
0.02
0.06
0.10
0.05
0.09
0.07
0.09
0.10
0.13
0.09
0.18
0.27
0.23
0.05
0.13
0.04
0.04
0.04
0.04
0.10
0.07
0.02
0.04
0.04
0.03
0.04
0.05
0.02
0.05
0.08
0.10
0.02
0.14
0.13
0.05
0.02
0.06
0.02
Absolute shifts between 11-39‰
Low C (5-12nA signal)
Very good precision: ≤ 0.20‰
and ≤ 0.1‰ for shift below 30‰
Absolute shifts between 6-73‰
High C (16-55nA signal)
Still very good precision: ≤ 0.20‰
(shift larger than 60‰ ≤ 0.30‰)
With 5 injections
all data ≤ 0.10‰
(shift larger than 60‰ ≤ 0.20‰)
23
Accuracy
All data corrected with 2 points calibration curve
Caffeine (IAEA-600) d13C -27.77‰
Glucose (IAEA-CH6) d13C -10.45‰
-60
-50
-40
-30
-20
-10
0
0
y = 1.00031x + 0.04485
r2 = 0.9999
C [‰]
-10
13
-20
Average difference between
measured and target value
0.09‰
target
-30
Only in 3 over 13 measurements
-40
differences ≥ 0.15‰
-50
-60
TOC measured
13
C [‰]
24
Linearity of the system and concentration range
(data courtesy of Dr. Chiara Cerli – U. Amsterdam)
IRMS signal [nA]
0
9
18
27
36
45
55
64
73
-9
Between 5-150ppm (5-70nA)
-12
Very good linearity:
-15
≤ 0.03 ‰/nA
13C [‰]
-18
-21
Between 1-150ppm (1-70nA)
-24
-27
Very good linearity:
-30
≤ 0.03 ‰/nA
-48
except for
-51
L-trypthophane (0.07 ‰/nA)
0
20
40
60
80
100
120
140
160
DOC [mgC L-1]
L-tryptophane
acetovanillone
humic acid
benzoic acid
urea
mixture
humic acid (0.06 ‰/nA)
glucose (0.04 ‰/nA)
citric acid
caffeine
melamine
glucose
25
Real samples
0.5 ml injection, different concentrations
-25.6
DOM extracted from:
-26.0
H horizon from Podzol
(std dev 0.02‰)
-26.4
13C [‰]
-26.8
Forest floor
(std dev 0.15‰)
-27.2
-27.6
Peat
(std dev 0.03‰)
-28.0
Rice
(std dev 0.05‰)
-32.4
-32.8
Moss
(std dev 0.17‰)
-33.2
0
20
40
60
80
100
120
140
DOC [mgC L-1]
peat
forest floor
H podzol
moss
rice
Measured
very well
26
Real samples: concentration vs volume
(data courtesy of Dr. Chiara Cerli – U. Amsterdam)
d13C
d13C
10-150 mgC L-1
stdev
10-100 mgC L-1
stdev
[‰]
[‰]
[‰]
[‰]
Citric acid
-25.35
0.18
-25.44
0.11
Benzoic acid
-28.92
0.34
-28.91
0.40
L-Trypthophane
-11.35
0.31
-11.47
0.09
Acetovanillone
-30.53
0.15
-30.61
0.07
Good std dev:
Acetovanillone (fix C)
-30.58
0.03
-30.57
0.03
≤ 0.30 ‰
Urea
-50.05
0.17
-50.13
0.12
Caffeine
-49.06
0.23
-49.16
0.18
Mixture
-28.93
0.62
-29.08
0.68
Humic acid
-26.18
0.30
-26.21
0.35
(25mgC, ~22nA)
Humic acid (fix C)
-26.34
0.03
-26.35
0.03
Inj vol 0.08-2.5ml
Melamine
-19.77
0.23
-19.89
0.15
Glucose
-11.16
0.21
-11.24
0.19
nd
nd
-32.70
0.17
-32.81
0.09
-32.80
0.09
DOM_Moss
DOM_Moss (fix C)
Constant inj vol (0.5ml)
Various C concentrations
(10-150 mg L-1)
Constant C injection
Very good std dev:
≤ 0.09 ‰
27
Conclusions
Performances very satisfying
stable system (large ‰ shift)
accurate
Wide range of system linearity (2-80nA <0.03‰/nA)
flexibility for handling real samples
Injection volumes (0.05-4ml)
1 nA/µg C
`high throughput, easy to use and maintain
Very interesting tool that widen
opportunities for studies in
environmental research
28
Acknowledgements
Federherr E., H.P. Sieper, Lutz Lange, H.J. Kupka, R. Dunsbach, F. Volders
Paul Wheeler, Mike Seed, Will Price, Rob Berstan
Special thanks go out to Dr. Chiara Cerli at the University of Amsterdam
(Institute for Biodiversity and Ecosystem Dynamics) for providing us with
additional data.
29
INTRODUCTION
Schematic Outline of the Iso TOC Cube
30
Sample
vial
Halogen
trap
Sample
Syringe
IR detector
Drying
tube
Sparger
Furnace
Condenser
Nafion
Membrane
31
STEP ONE
Acidify Sparge Vessel to remove TIC
32
33
STEP TWO
Flush sample lines to waste and fill
syringe
34
35
STEP THREE
Dose sample for TIC removal
36
37
STEP FOUR
Measure TIC
38
39
STEP FIVE
Measure TOC
40
41

similar documents