Diapositiva 1 - Longwall USA

Report
Mine VII Micare Unit
Minera del Norte S.A de C.V
Coahuila -Mexico Coal Basins
Mine Location
Micare was
established in 1977
We Operate:
2 Underground Mines
1 Open Pit Mine
2 Wash Plants
Micare’s Coal Produces
10% of Mexico’s
Electricity
Our Thermal Coal Client:
“Comision Federal de
Electricidad” Mexican
Goverment Entity
Micare’s Production:
7 millions tonnes of thermal
coal annually.
Geology-Column Type
Mine VII Description
-
2-Entry Slope Mine Access
1 Vertical Ventilation Shaft
4-Entry Mains
2-Entry Longwall Gateroads
24 Projected Longwall Panels
180-340m Overburden Depth Range
7 m3/tonne Average Methane Gas Content
1.7 – 3.0m Coal Thickness
Average ROM Ash Content 48.7%
Gateroad Development
-
8 to 9 Alpine AM-50 or IBS-130 road headers for mains and gateroad development
2-entry gateroad, horseshoe shaped entries having dimensions 4m wide x 3m high
Steel arches 33 kg/m installed on 1m spacing with steel mesh between the arches
Pillars dimensions 40m x 150m
2 face fans/section, 75/150 HP, blowing or exhausting
ARCOS
914 x 3000 mm
(36”x10´) fiberglass ventilation tube
OMEGA
Advance Rates: 20,000m/year, 190m/month/unit
MC-29
Tren de Controles
MC-52
63
.2
05
62
-
.1
53
Panel Dimension : 200 – 250m wide, 600 – 2000m long
Joy Shearer 7LS1A, 932 KW
AFC American Longwall/Ryfama, 900mm, 2x560 KW
Roof support Fazos shields 1.5m wide, 500t capacity
RMI hydraulic pumps
Face voltage 4160 V
Longwall Characteristics
Longwall Ventilation System
X°01
X°01
X°01
X°02
X°02
X°03
X°03
X°04
X°04
X°05
X°05
X°06
X°04
X°05
X°06
X°07
X°08
X°09
X°10
X°11
X°12
X°13
X°14
X°15
M -2
M -3
M -4
M -5
M -6
M -7
M -8
M -9
M -10
M -11
M -12
M -13
M -14
M -15
X°03
X°02
X°01
REGRESO
M -1
X°1
Regreso
BANDA
A2 7.0
28
24
87
b-2
b-3
b-1
X°8
4
Banda
Regreso 2
Regreso 1
Arrastre
X°8
3
31
2
1
31
06
BANDA
BANDA
A1 7.0
28
X°01
X°05
X°04
X°04
X°03
X°03
X°02
X°02
X°01
REGRESO
REGRESO
3
X°6
2
BANDA
O
BN
X°5
O
BN
X°01
X°07
X°07
X°06
X°06
X°05
X°05
X°04
X°04
X°03
X°03
X°02
X°02
X°01
REGRESO
1
62.153
X°4
O
BN
3
Barreno
Pileta
X°3
81
M2 7.1
28
63.205
IV
DE
IO TE L
MB IEN
CA ND 1 INC RIZ
PE .41 HO
762 .90
733
6
X°01
X°02
X°03
X°04
X°05
X°06
X°07
X°08
X°09
X°10
X°11
X°12
X°13
X°14
BANDA
O
EN
Cuart o de
Herramienta
Int's.
Elect.
Barreno
Cables
M -1
REGRESO
A3 6.9
28
46
RR
R
Banda
Banda
C. peso
Telesillas
TE
Arrastre
Regreso 2
Regreso 2
Regreso 1
Regreso 1
Compresor
Barreno
Arrastre
Agua Limpia
X°2
I NTERS
V
IN
Barreno
BA
E RC
X°1
no
rre
Ba
S
I NTER
INT
M -3
M -4
M -5
M -6
M -7
M -8
M -9
M -10
M -11
M -12
M -13
M -14
M -15
M -16
M -17
M -18
M -19
M -20
M -21
M -22
M -23
M -24
M -25
M -26
M -27
M -28
M -29
M -30
M -31
M -32
M -33
M -34
M -35
M -36
M -37
M -38
M -39
M -40
M -41
M -42
M -43
M -44
M -45
M -46
M -47
M -48
M -49
M -50
M -51
M -52
M -53
M -54
M -55
M -56
M -57
M -58
M -59
M -60
M -61
M -62
M -63
M -64
M -65
M -66
M -67
M -68
M -69
M -70
M -71
M -72
M -73
M -74
M -75
M -76
M -77
M -78
M -79
M -80
M -81
M -82
M -83
M -84
M -85
M -86
M -87
M -88
31,72
M -2
MC
48
.- 0
MC
49
.- 0
X°10
Pilas
Mov.
M -27
M -28
M -26
M -25
M -24
M -22
M -23
M -20
M -21
M -18
M -19
M -17
M -16
M -15
M -13
M -14
M -11
M -12
M -9
M -10
M -8
M -6
M -7
M -4
M -5
M -2
M -3
M -1
X°9
AG OS
TO
2012
AG OS
TO
2012
M1 7.4
28
O
PT
X°
T.V
X°01
M -80
M -79
M -77
M -78
M -75
M -76
M -73
M -74
M -71
M -72
M -70
M -69
M -67
M -68
M -66
M -64
M -65
M -63
M -62
M -61
M -59
M -60
M -57
M -58
M -56
M -54
M -55
M -52
M -53
M -51
M -50
M -49
M -47
M -48
M -46
M -45
M -43
M -44
M -42
M -40
M -41
M -38
M -39
M -36
M -37
M -34
M -35
M -32
M -33
M -31
M -29
M -30
14,51
P016
P019
P015
P016
P01 7A
INCLINADO BANDA
V.2
T.
V.3
T.
X°02
X°03
X°04
X°05
X°06
X°07
X°08
X°09
X°10
X°11
X°12
X°13
X°13½
X°14
X°15
X°16
X°17
X°9
Banda
A
M -9
M -8
M -6
M -7
M -1
REGRESO
Arrastre
Regreso 2
M -14
M -15
M -13
M -11
M -12
M -10
M -5
M -4
M -2
BANDA
Regreso 1
INCLINADO ARRASTRE
V.1
T.
D IR EC CI ON D E EN T R ADA
0+000 A
286.704
X°T.V
0+000 B
286.667
P017
M -3
X°00
MAIN SHAFT
350 m3/h
BANDA
X°16
X°16
X°7
Coal prone to spontaneous combustion
Utilizes “U” ventilation system
Ventilation provided to longwall face 20-25 m3/sec
Concrete seals are installed in crosscuts behind face
X°7
-
REGRESO
REGRESO
RES
REG
O
BANDA
X°3
REGRESO
X°2
Longwall Gas Control
ERS
INT
63.205
62.153
* Gob gas wells
* 90m spacing along panel, 30m off TG
* 450lps gas well pump capacity
* Gas wells completed 5m above coal seam
* Slotted steel pipe casing
Automated Monitoring System (AMS)
Infrastructure
Automated Monitoring System (AMS) – The main
objective of the AMS is to monitor in real time the
gas concentration in the working faces and other
mine areas such as conveyor belts and returns,
safe guarding the personnel’s integrity and mine
infrastructure.
The most common measured gases in coal mining
are: Methane (Ch4), Carbon Monoxide (CO), COSmoke for conveyor belts, among several others.
The system can shut down electrical power to a
mine section once the concentration goes above
the configured value; the same applies to
conveyor belts. This is accomplished by
programming the system with the maximum
allowed values.
Mine evacuation alarms are also controlled via the
Automated Monitoring System.
Mine Control Room – Personnel are available all shifts to
monitor the gas measurements in the mine. Feedback is given to
supervisors about the mine gases concentrations and actions are
taken accordingly.
Historical Underground Mine Production Micare Unit
4500000
4000000
3500000
Mine V
Mine VI
Mine VII
3000000
2500000
2000000
1500000
1000000
500000
0
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
4M Tonne Annual Production Strategy
-
Increase capacity of coal conveyance
Rebuild Existing or purchase new equipment
Skilled Personnel
Have available 4 Sets longwall equipment
Maintain 2 Operating Longwalls
Mine 4 Longwall panel per year
4 MM T Production Constraints
-
Unexpected Geology Faults
5 to 15 meters throw
Changing orientation
Narrowing long wall width
Spliting of Long Wall panel
Weak and stressed fault zone
Slow down roadgate development
Increase Long Wall moves
Excesive wear of equipment
Longwall polyurethane injection system
Negotiating Faults in Longwall Panels
Action Plan to Manage Mining Constraints
Timely Fault Detection for Mine Planning
- Reduce the size of the exploration grid (increased drilling)
- Utilize seismic detection methods
Decrease Longwall Move Duration Times
- Acquire spare components/parts in advance
- Increase gateroad development rates
- Increase productivity
- Increase number of roadheader units
- Reduce roof support cost
- Rebuild equipment in-house
Geologic Fault Detection - Reflection Seismic Method
Banda
Arras
ESO
tre
so
REGR
Regre
1
Regre
A
9
73
L-2
so
BAND
6
73
L-2
L27
37
REGR
ESO
BAND
A
3
73
L-2
2
74
L-2
2
S=7
L27
38
L27
35
-13
-12
14
-13
-07
06
13
-0
713
-13
-10
12
S=3
-13
S= 3-4 m
2km seismic line
10 days surveying analysis
Detection of minimun 5mfault throw
3 D seismic project to detect faults with <3m throw
23
-1
112
-
18
-0
513
21
-0
913
03
-0
813
22
-0
613
L27
41
L27
40
-08
31
Geological Fault Detection - Reflection Seismic Method
S
N
Interpretación Línea 2723
Fault, Throw 9 m.
Fault < 3 m.

similar documents