HiRadMat-Window-v3.0

Report
HiRadMat Window
Design report v3.0
Michael MONTEIL - 12 April 2010
1
Specifications v3.0
• Interface between machine vacuum and
Atmospheric pressure
10-8 mbar / Patm
 Protective atmosphere !!!
• Aperture min 60 mm
• Resist to a proton beam size on the window :
1s = 0.5 mm
“Beam Size at the TT66 Vacuum Window”,
C. Hessler, 26.02.2010
Michael MONTEIL - 12 April 2010
2
Solution #5 : Be + C-C
• Same as solution #4 but the pressure load is
supported by a C-C plate
⁺
⁺
⁺
⁺
Simple window assembly
Thin thickness (no differential pumping…)
Be cannot pollute vacuum chamber unless C-C fail
Tight
⁻ Price of Be but no pumps
Michael MONTEIL - 12 April 2010
3
Solutions - Sum-up
• #1: C-C (Differential pumping)
– Protective atm (Nitrogen ?)
– Radiations?
• #2: C-C + Graphite foil (useless now)
• #3: Tight steel “ring” with a C-C plate
• #4: Beryllium
– Safety problem
• #5: C-C + Beryllium
 Today
Michael MONTEIL - 12 April 2010
4
Different grades of Be
Michael MONTEIL - 12 April 2010
Data: Brush Wellman
5
Different grades of Be
• PF-60 ?
– Low rate of Beryllium oxide
compare to PS-200
– Good quality-price ratio
(Next slides…)
• 1.5 to 2 time cheaper than IF-1
– Almost the same
temperature distribution as
pure Be and IF-1 (IF-1 a bit
better…)
– Used in CNGS…
Michael MONTEIL - 12 April 2010
Collaboration: J. Blanco
6
Design
• Specification
– Be & C-C
– Aperture min. 60mm
– DN80 or DN60 conical flange connection
– 15 cm depth maximum
• Remark
– Cannot machine Be at CERN
Michael MONTEIL - 12 April 2010
7
Design
• Common design – Choices
– Standard flanges only (cheaper)
– Be window assembled in lab between 2 flanges (safety)
– Conical flange (faster assembly once in experimental area)
Design
Conical Flange (plug-in flange)
Tube (connection conical flange <--> conflat flange)
2 x Conflat (Window in-between)
Michael MONTEIL - 12 April 2010
8
“CNGS” like
CNGS
HiRadMat – Option 1
Nota: Those drawing are drafts. Above dimensions are not representative of the reality
Michael MONTEIL - 12 April 2010
9
“CNGS” like
Data: Brush Wellman
Michael MONTEIL - 12 April 2010
10
“CNGS” like
Data: Brush Wellman
Michael MONTEIL - 12 April 2010
11
“TED @ TI2, TT40” – Beryllium version
“TED @ TI2, TT40”
HiRadMat – Option 2
Michael MONTEIL - 12 April 2010
12
“TED @ TI2, TT40” – Beryllium version
• Quote from BW
Michael MONTEIL - 12 April 2010
13
2 design proposals
Option 1
Option 2
+ Life warranty on Be + flange
assembly
+ Easy to assembly
+ Standard conflat assembly
+ Tightness OK
- Not that much
+ Not that much
- Precautions for the assembly
- Non Standard conflat assembly
(Tightness)
- Might be careful to not cut
(shear cut) the Be foil during
assembly
Nota: Those drawing are drafts. Above dimensions are not representative of the reality
Michael MONTEIL - 12 April 2010
14
2 design proposals
Cost estimation
Be Foil
Option 2
Option 1
• Number of flange to order : 2 • Number of foil to order : 3
– Spare : 1
– Window installed : 1
– Spare : 1
– Window installed : 1
– “In case we break a foil while
assembling” : 1
Nota: Those drawing are drafts. Above dimensions are not representative of the reality
Michael MONTEIL - 12 April 2010
15
2 design proposals
Cost estimation
Be Foil
Option 1
Flange
Grade
IF-1
Quantity
1
2
3
4
5
Foil
0.254 mm 6384 2128 8228 2057 10220 2044
0.254 mm 2552 2552 5104 2552 7656 2552 10208 2552 12760 2552
Flange
0.381 mm 3266 3266 6532 3266 9798 3266 13064 3266 16330 3266
Grade
PF-60
Quantity
1
2
3
Foil
0.254 mm 3192 1064
0.254 mm 1944 1944 3888 1944 5832 1944
Flange
0.381 mm 1903 1903 3806 1903 5709 1903
4
3968 992
7776 1944
7612 1903
Option 2
Foil
5
4895 979
9720 1944
9515 1903
Grade
PS-200
Quantity
1
2
3
4
5
Foil
0.254 mm 0.254 mm 1890 1890 3780 1890 5670 1890 7560 1890 9450 1890
Flange
0.381 mm 1866 1866 3732 1866 5598 1866 7464 1866 9330 1866
Nota: Those drawing are drafts. Above dimensions are not representative of the reality
Michael MONTEIL - 12 April 2010
16
About thickness, how does BW design their own
Be foils?
Data: Brush Wellman
With (Thickness 0.25mm, radius 35mm, pressure 1.01 kPa, E
303Gpa, Poisson 0.08)
Results
–
–
sedge= 305MPa > 275 Mpa !!
scenter= 297Mpa > 275 Mpa !!
Michael MONTEIL - 12 April 2010
17
However…
•
BW : “With confirm that your
calculations with reference to the
DB450277 assembly are correct and
show over the recommended values,
however, the assembly was designed
using empirical data as well taking into
consideration the calculated values. We
have performed tests on this design and
found it to be reliable, with units sold to
customers over the years performing
well under real-life conditions.”
• Explanation
– Because of plasticity effects, Be foil
withstands 1 Atm (according to BW
tests) even if Roark’s calculation says
that it doesn’t withstand
Michael MONTEIL - 12 April 2010
Data: Brush Wellman
18
To know
• Be have ultra
high resistance to
fatigue cracking
• High endurance
strength level
Michael MONTEIL - 12 April 2010
Data: Brush Wellman
19
Solutions #5
stresses and deflection - C-C+Be under DP = 1 atm
• Linear circular fixed support
• 2 planes of symmetry
• Geometry
– Diameter f 80 mm
– Thickness: 0.254 mm
– Aperture: f 60 mm
• Pressure 1 atm
Michael MONTEIL - 12 April 2010
20
ANSYS Study - Solutions #5
stresses and deflection - C-C+Be under DP = 1 atm
• Beryllium foil study
– Smooth and continuous temperature distribution
– Through-thickness energy deposition
– Coefficient of Thermal Expansion varying with
temperature
– Be (pure elasticity):
• Poisson’s ratio = 0.08
• High Re = 303 Mpa
Michael MONTEIL - 12 April 2010
21
Michael MONTEIL - 12 April 2010
22
Michael MONTEIL - 12 April 2010
23
Michael MONTEIL - 12 April 2010
24
Michael MONTEIL - 12 April 2010
25
Michael MONTEIL - 12 April 2010
26
Michael MONTEIL - 12 April 2010
27
Michael MONTEIL - 12 April 2010
28
Michael MONTEIL - 12 April 2010
29
Michael MONTEIL - 12 April 2010
30
Michael MONTEIL - 12 April 2010
31
Michael MONTEIL - 12 April 2010
32
Conclusion: influence of gap reducing
• So if we flatter the foil on the C-C, we reduce the Max stress
(as shows ANSYS calculation with non plasticity model),
maybe also stay in elastic domain (Bellow 275Mpa at room
Temp).
 We will manage to reduce this gap (flattering the Be foil as
much as possible on C-C plate)
Michael MONTEIL - 12 April 2010
33
Easiness to reduce Gap C-C / Be
Option 1
Option 2
Michael MONTEIL - 12 April 2010
34
To do :
• Order Beryllium
– Delivery: 4 Weeks ARO for flanges (Option 1)
– Delivery: 6 Weeks ARO fro foil (Option 2)
• Assembly
• Test
Michael MONTEIL - 12 April 2010
35
Michael MONTEIL - 12 April 2010
36
V2.0 slides
Michael MONTEIL - 12 April 2010
37
Window geometry – C-C option
• Carbon/Carbon composite: 1501 G from SGL
• Cylindrical window
• Diameter f 80 mm
– Aperture f 60 mm
• Thickness: 0.5 cm
• Aperture (flange internal diameter): f 60 mm
Michael MONTEIL - 12 April 2010
38
Solutions #1 for C-C tightness problem:
Differential vacuum (V2.0)
• 1 Window C-C
– Pumping speed needed: 2.3x108 l/s …
• 2 Windows C-C with differential pumping
– Pumping speed needed: 8.94x102 l/s OK !
• 3 Windows C-C with differential pumping
– Pumping speed needed: 13 l/s Too low ?!
Michael MONTEIL - 12 April 2010
39
Solutions #1
• What about radiations in this area ?
– Possible maintenance needed on the roots pump…
• Protective atmosphere
• Decreasing pressure in Vacuum
side with serial pumps
Michael MONTEIL - 12 April 2010
40
P1 (ATM) Window1
1.00E+03
P
D cm
C-C
6
6
K cm2/s
5.00E-02
5.00E-02
A cm2
L cm
2.83E+01
0.5
2.83E+01
0.5
Q mbar*cm3/s
2.83E+00
8.94E-06
1.00E+03
3.16E-03
DP mbar
3
Q mbar*cm /s
S
m3/h
P1 (ATM) Window1
1.00E+03
D cm
A cm2
L cm
2.83E+01
0.5
2.83E+01
0.5
Q mbar*cm3/s
2.83E+00
2.83E-05
1.00E+03
1.00E-02
2.83E+00
2.83E-05
S
l/s
m3/h
P1 (ATM) Window1
1.00E+03
P
D cm
2.83E+01
0.5
2.83E+01
0.5
Q mbar*cm3/s
2.83E+00
8.94E-05
1.00E+03
3.16E-02
2.83E+00
8.94E-05
S
l/s
m3/h
2.83E+00
1.41E-05
1.00E+03
5.00E-03
2.83E+00
1.41E-05
l/s
m3/h
P1 (ATM) Window1
1.00E+03
P
5.65E+02
1413.714
2035.7
5089.4
P2
Window2
P3
3.16E-03
1.00E-08
6
6
K cm2/s
5.00E-02
5.00E-02
A cm2
L cm
2.83E+01
1
2.83E+01
1
Q mbar*cm3/s
1.41E+00
4.47E-06
1.00E+03
3.16E-03
1.41E+00
4.47E-06
Q mbar*cm /s
S
l/s
m3/h
4.47E+02
447.0551
1609.4
1609.4
P2
Window2
P3
3.16E-02
1.00E-06
A cm
L cm
Q mbar*cm /s
Q mbar*cm3/s
3
1017.9
6
3
2.83E+01
0.5
DP mbar
1017.9
5.00E-02
DP mbar
2.83E+01
0.5
S
C-C
282.7405
6
2
A cm2
L cm
D cm
2.83E+02
5.00E-02
K cm2/s
6
5.00E-02
Q mbar*cm /s
P2
Window2
P3
1.00E-02
1.00E-07
5.00E-02
6
5.00E-02
3
3218.8
P2
Window2
P3
5.00E-03
1.00E-08
K cm2/s
DP mbar
894.1101
5.00E-02
Q mbar*cm3/s
C-C
3218.8
K cm /s
DP mbar
D cm
8.94E+02
6
P1 (ATM) Window1
1.00E+03
P
8.94E-06
6
2
C-C
2.83E+00
l/s
P
C-C
P2
Window2
P3
3.16E-03
1.00E-08 Reference
8.94E+01
89.40847
321.87
321.87
• P2 : Roots pump
• 100 –> 1500 m3/h
• 10-3 -> 10 Bar
• P3 : Ion pump
• 400 l/s
Michael MONTEIL - 12 April 2010
41
Solutions #2 for C-C tightness problem: Add a
Graphite foil (v1.0)
Solution #3 : Tight steel“ring” with a C-C plate
(v1.0)
Solution #4 : Beryllium
Michael MONTEIL - 12 April 2010
42
Michael MONTEIL - 12 April 2010
43
ANSYS Study - Solutions #1
stresses and deflection - C-C under DP = 1.4atm
• Linear circular fixed support
• 2 planes of symmetry
• Geometry
– Diameter f 80 mm
– Thickness: 5 mm
– Aperture: f 60 mm
• Pressure 1.4 bar
Michael MONTEIL - 12 April 2010
44
ANSYS Study - Solutions #1
stresses and deflection - C-C under DP = 1.4atm
• Orthotropic properties : 18 plies [0°/90°…]
• Smooth and continuous temperature
distribution
• Through-thickness energy deposition
• Coefficient of Thermal Expansion varying with
temperature and directions
Michael MONTEIL - 12 April 2010
45
C-C - Pressure load - Deflection
7.4 μm
Michael MONTEIL - 12 April 2010
46
C-C - Pressure load – Von-Mises
5.9 Mpa
Michael MONTEIL - 12 April 2010
47
C-C - Pressure load – Tsaï-Wu
Michael MONTEIL - 12 April 2010
48
C-C - Thermal load
ANSYS input = FLUKA output
C-C | 1s = 0.5 mm | 1.7e11 p+ | 288 bunches
• Axisymmetrical radial temperature field
T (°C)
T (°C)
R (cm)
Radial
Z (cm)
Depth
Michael MONTEIL - 12 April 2010
49
C-C - Pressure + Thermal load – Deflection
10.6 μm
Michael MONTEIL - 12 April 2010
50
C-C - Pressure + Thermal load – Von-Mises
31 Mpa
Michael MONTEIL - 12 April 2010
51
C-C - Pressure + Thermal load – TsaïWu
Michael MONTEIL - 12 April 2010
52
Michael MONTEIL - 12 April 2010
53
ANSYS Study - Solutions #4
stresses and deflection - Be under DP = 1.4atm
• Linear circular fixed support
• 2 planes of symmetry
• Geometry
– Diameter f 80 mm
– Thickness: 0.254 mm
– Aperture: f 60 mm
• Pressure 1.4 bar
Michael MONTEIL - 12 April 2010
54
ANSYS Study - Solutions #4
stresses and deflection - Be under DP = 1.4atm
• Smooth and continuous temperature distribution
• Through-thickness energy deposition
• Coefficient of Thermal Expansion varying with
temperature
• Be:
– Poisson’s ratio = 0.1
– High Re = 275 Mpa
– High Rm = 551 MPa
Michael MONTEIL - 12 April 2010
55
Be - Pressure load - Deflection
0.81 mm
Michael MONTEIL - 12 April 2010
56
Be - Pressure load – Von-Mises
319 Mpa
Michael MONTEIL - 12 April 2010
57
Be - Pressure load – Safety factor Ult. Strength
1.7
Michael MONTEIL - 12 April 2010
58
Be - Thermal load
ANSYS input = FLUKA output
Be | 1s = 0. 5 mm | 1.7e11 p+ | 288 bunches
• Axisymmetrical radial temperature field
T (°C)
T (°C)
Z (cm)
Radial Be
Z (cm)
Michael MONTEIL - 12 April 2010
59
Be - Pressure + Thermal load – Deflection
0.8 mm
Michael MONTEIL - 12 April 2010
60
Be - Pressure + Thermal load – Von-Mises
315 Mpa
Michael MONTEIL - 12 April 2010
61
Be - Pressure + Thermal load – Safety factor Ult. Strength
1.7
Michael MONTEIL - 12 April 2010
62
ANSYS Study - Solutions #5
•
stresses and deflection - C-C+Be under DP =
1.4atm
2 Studies
– C-C (See Solution #4)
•
•
Pressure load
Pressure + Temperature loads
– Be (Following slides)
•
•
•
•
Flattered on a C-C plate (Fixed support)
and apply pressure load on the other side
Flattered on a C-C plate (Fixed support)
and apply pressure load on the other side
+ Temperature load
2 planes of symmetry
Geometry
– Diameter f 80 mm
– Thickness
•
•
C-C: 5 mm
Be: 0.254 mm
– Aperture: f 60 mm
•
Pressure 1.4 bar
Michael MONTEIL - 12 April 2010
63
ANSYS Study - Solutions #5
stresses and deflection - C-C+Be under DP =
1.4atm
• Smooth and continuous temperature
distribution
• Through-thickness energy deposition
• Coefficient of Thermal Expansion varying with
temperature
Michael MONTEIL - 12 April 2010
64
Be (flatter on C-C) - Pressure load – Deformation
Michael MONTEIL - 12 April 2010
65
Be (flatter on C-C) - Pressure load – Von-Mises
Michael MONTEIL - 12 April 2010
66
Thermal load
ANSYS input = FLUKA output
C-C + Be | 1s = 0.5 mm | 1.7e11 p+ | 288 bunches
• Axisymmetrical radial temperature field
T (°C)
T (°C)
Depth C-C
Z (cm)
Z (cm)
Radial C-C
Z (cm)
Radial Be
Michael MONTEIL - 12 April 2010
67
Be (flatter on C-C) - Pressure + Thermal load – Deflection
5.4 um
x 2.6e+002
Michael MONTEIL - 12 April 2010
68
Be (flatter on C-C) - Pressure + Thermal load – Von-Mises
Michael MONTEIL - 12 April 2010
69
Be (flatter on C-C) - Pressure + Thermal load – Safety factor Ult. Strength
x 2.6e+002
Michael MONTEIL - 12 April 2010
70
To do :
• Rough mechanical design
– Solution #1 C-C with differential pumping
• Maybe coating
• 15 cm length between upstream and downstream sides
– Solution #5 C-C + Be
• Order quotes of Be
• Same design that window in TI8, TI2, TT41 (Design by Kurt
Weiss, Luca Bruno and Jose Miguel Jimenez) but replacing
the Ti foil by a Be foil
• Nickel-coating to prevent oxidation on Be ?
• 15 cm length between upstream and downstream sides
Michael MONTEIL - 12 April 2010
71

similar documents