pptx - Rencontres de Moriond

Report
Cosmology with Galaxy Clusters
from the SDSS maxBCG Sample
Jochen Weller
Annalisa Mana, Tommaso Giannantonio,
Gert Hütsi
Recontres de Moriond 2012
1
more low
mass clusters
Theory: Counting Halos in
Simulations
Count halos in Nbody simulations
Measure “universal”
mass function density of cold dark
matter halos of given
mass
more low
redshift clusters
Recontres de Moriond 2012
2
Universality of the Mass Function
Claims of universal
parameterization in terms
of linear fluctuation σ(M)
Tinker et al. 2008 find
additional redshift
dependence (strongest
effect in amplitude, but
also shape)
This effect can be
included in
parameterization
Recontres de Moriond 2012
3
The SDSS maxBCG Sample
•#13,823
•7,500 deg2
•z=0.1-0.3
•red
sequence
method
Recontres de Moriond 2012
Catalogue: Koester et. al 2007
4
Cosmology:
Rozo et al. 2009
The Counts Data
Recontres de Moriond 2012
5
Counts vs. Theory
Recontres de Moriond 2012
6
Cosmology with Number
Counts
•Ωm = 0.282
σ8 = 0.85
•Ωm = 0.2
•σ8 = 0.78
Recontres de Moriond 2012
7
Scaling Relation and Scatter
Assume linear scaling in log mass-richness
relations: ln M = a lnNgal +b
Scatter constrained by x-ray and weak lensing data
(Rozo et al. 2009)
For analysis we require: σNgal|lnM
Simply related via scaling relation: use as prior in
analysis; related via slope
Recontres de Moriond 2012
8
Mass Data
•stacked weak lensing
•fit by fixing: M1 =
1.3×1014 M and M2 =
1.3×1015 M and ln N1
and ln N2 as free
parameters
•allow for bias in mass
measurement by a factor
β
Johnston et al. 2007
Sheldon et al. 2007
Recontres de Moriond 2012
9
Results – Counts and Weak
Lensing Mass
Implemented into
COSMOMC:
Lewis & Bridle
Consistent
with Rozo et al.
2009
self calibraition:
Majumdar & Mohr 2003
Lima & Hu 2005
Recontres de Moriond 2012
10
The Power Spectrum of
maxBCG Clusters
Recontres de Moriond 2012
11
Hütsi 2009
Non-linear Corrections and
Photo-z Smoothing
•qNL = 14: non-linear
•σz = 59: photo-z smoothing
•beff = 3.2: bias
Recontres de Moriond 2012
12
Hütsi 2009
Bias for Clusters
Calculate from mass function via peakbackground split (Tinker et al. 2010)
average bias
Recontres de Moriond 2012
13
beff = Bb_i
Bias vs. Mass Selection
Recontres de Moriond 2012
14
Model and Priors
nS = 0.96
h = 0.7
Ωb = 0.045
flat, ΛCDM
photo-z errors: σzphot|z = 0.008
β=1.0±0.06
σlnM see previous slide
B=1.0±0.15
σz=30±10
purity/completeness: Error added in quadrature: 5%
Recontres de Moriond 2012
15
Power Spectrum Included
Recontres de Moriond 2012
16
Parameter Degeneracies
Recontres de Moriond 2012
17
Models vs. Data
Recontres de Moriond 2012
18
Marginalized Values
Ωm
no Power
Spectrum
All Data
ln N1
ln N2
0.26± 0.80±
0.068 0.069
2.45±
0.11
4.21±
0.16
0.366± 1.01±
0.064 0.058
0.23±
0.024
2.48±
0.085
4.17±
0.13
0.355± 1.02± 18±
0.060 0.058 5.1
Recontres de Moriond 2012
σ8
0.82±
0.041
19
σln M
β
qNL
σz
B
-
-
-
35±
6.1
1.10±
0.11
Summary
Clusters selected with richness and weak
lensing masses give meaningful cosmological
constraints
crucial to understand nuisance parameters
power spectrum tightens constraints; but nonlinear modelling required
more to come … different cosmologies,
additional datasets
Recontres de Moriond 2012
20
Outlook
maxBCG
eRosita
Euclid
Recontres de Moriond 2012
21

similar documents