Cell - TerraME

Report
Spatial Dynamical Modeling
with TerraME
Tiago Carneiro
Gilberto Câmara
Dynamic Spatial Models
f (It)
f (It+1)
F
f (It+2)
f ( It+n )
F
..
“A dynamical spatial model is a computational
representation of a real-world process where a location
on the earth’s surface changes in response to variations
on external and internal dynamics on the landscape”
(Peter Burrough)
Computational Modelling with Cell Spaces
Cell Spaces

Representation

Cell Spaces

Generalized Proximity Matriz – GPM

Hybrid Automata model

Nested scales
TerraME - overview
Model data in cell spaces
Read/write data
from a database
Cellular Data Base Resolution
2500 m
2.500 m e 500 m
TerraME functionality
TerraME INTERPRETER
• model syntax semantic checking
• model execution
TerraView
• data acquisition
• data visualization
• data management
• data analysis
LUA interpreter
TerraME framework
data
model
model
TerraME/LUA interface
MODEL DATA
Model
source code
TerraLib
database
data
Eclipse & LUA plugin
• model description
• model highlight syntax
TerraME: Software Architecture
Model 1
Model 2
Model 3
Model 4
TerraML Language
TerraMLCompiler
TerraML Virtual Machine
TerraME C++
Framework
C++ Signal
Processing
librarys
TerraLib
C++
Mathematical
librarys
C++
Statistical
librarys
TerraLib: the support for TerraME
Open source library for GIS
 Data management

 object-relational DBMS


raster + vector geometries
ORACLE, Postgres, mySQL, Access
Environment for customized GIS applications
 Web-based cooperative development

 http://www.terralib.org
TerraME integration with GIS (TerraView)
“GPM” Plugin
TerraView 3.2.0
“FillCell” Plugin
TerraView 3.2.0
TerraLib Databse
Conversion from GIS data to cell spaces
Real world
Vector geospatial data
Cell space
The mixed pixel problem
How can you transform from vectors to cell
attributes?
Using “FillCell” plugin to build Cell Spaces
1. Install the FillCell plugin: Copy the file "celulas.dll" to the directory
"C: \ Program Files \ TerraView3.2.0 \ plugins".
2. Build the cell space with the desired resolution
Fill the attributes of the cell spaces
For each data type to be transformed, there are appropriate
operations
Filling Cells from vector data
Numerical areas Categorical areas Lines
(polygons, cells)
(polygons, cells)
points
Min, max, average, sum,
standard dev
Majority class (by number
or by area)
Percentage of each class,
Percentage of majority
class, area of majority class
Average/Sum intersectionweighted
Presence,
minimum
distance, count





and
Lua
Roberto Ierusalimschy
PUC-Rio, Brazil
Lua and the Web
What is Lua?
Yet Another Scripting Language
an “extension” language
implemented as a library in ANSI C
Host
Program
Lua
Interpreter
-- a Lua script
color = RED
b = button {
label = ‘OK’,
x = 10,
y = 20}
Lua and the Web
Why Lua?
Simple and flexible
“Simple things simple, complex things possible”
Small, Efficient, Portable
Whole library written in ANSI C, compiles the same
source code in all platforms
Typical uses: MS-DOS, Windows (3.1, 95, NT), Unix
(Linux, Solaris, IRIX, AIX, ULTRIX), Next, OS/2, Mac
Lua and the Web
Where is Lua?
Inside Brazil
Petrobras, the Brazilian Oil Company
Embratel (the main telecommunication company in
Brazil)
many other companies
Outside Brazil
Lua is used in hundreds of projects, both commercial
and academic
CGILua still in restricted use
» until recently all documentation was in Portuguese
Lua and the Web
How is Lua?
Pascal-like Syntax.
function fat (n)
if n == 0 then
return 1
else
return n*fat(n-1)
end
end
Interpreter executes sequence of
statements.
function definitions are also statements (see
later)
Six types: numbers, tables, functions, strings,
userdata, nil
Lua and the Web
My first Lua program
C = 2; -- rain/t
K = 0.4; -- flow coefficient
q = 0;
-- RULES
for time = 0, 20, 1 do
-- soil water
q = q + C - K*q;
end
print(“q = "..q);
Types
Type nil
Different from everything else
Default variable type
Also acts as false (boolean)
Type boolean
Comparison value
if (rain == true) then ....
Type number
Unique native type for numbers
double (by default)
a = 3
b = 3.5
c = 4.5e-8
Type string
Immutable
No size limit (read large files as strings)
No termination value (‘\0’)
Powerful Pattern-matching in standard library
myname = “Werner Kuhn”;
Tables
Implement associative arrays:
any value (including functions and other tables) can be
used both for indices and values
t = {}
t[1] = "hello"
t.x = print
t.x(t[1])
t.next = t
-- creates an empty table
-- t.x is sugar for t[‘x’]
-- prints ‘hello’
-- circular list
Lua and the Web
Constructors
Expressions to create and initialize tables
Record style
point={x=10,y=20}
print(point.y) --> 20
List style
days={"Sun","Mon","Tue","Wed","Thu","Fri",
"Sat"}
print(days[3]) --> Tue
Mixed style
points={{x=0,y=0}, point, n=2} Lua and the Web
Table
loc = {
cover = "forest",
distRoad = 0.3,
distUrban = 2 };
loc.cover = “cerrado”;
loc[“cover”] = “soja”;
if (loc.distUrban > 1.5) then
Tables in Lua
loc = { cover = "forest", distRoad = 0.3,
distUrban = 2 };
loc.desfPot
=
loc.distUrban;
loc.distRoad
+
Tables em Lua : functions
loc = { cover = "forest", distRoad =
0.3, distUrban = 2 };
...
loc.reset = function( self )
self.cover = "";
self.distRoad = 0.0;
self.distUrban = 0.0;
end
Constructors
calls function
“article”
article{
author="F.P.Brooks",
title="The Mythical Man-Month",
year=1975,
}
news = {
{text = "New version 2.0", date = "21/05/1997"},
{text = "New example",
date = "21/05/1997"},
{text = "New version: 2.1",date = "17/06/1997"},
}
Lua and the Web
Functions in Lua
function fat (n)
if n == 0 then
return 1
else
return n*fat(n-1)
end
end
Functions in Lua
First class values
function inc (x)
return x+1
end
sugar
inc = function (x)
return x+1
end
Example: cloning a table t
clone = {}
foreach(t, function (i,e)
clone[i]=e
end)
Lua and the Web
Upvalues
Mechanism to allow functions to access non-local
variables
An upvalue is a variable expression whose value is
computed when the enclosing function is
instantiated (and not when the function is executed)
function add (x)
return function (y)
return y+%x
end
end
add1 = add(1)
print(add1(10)) --> 11
upvalue
Lua and the Web
Functions and Tables
w = {
redraw = function () ... end,
pick = function (x,y) ... end,
}
if w.pick(x,y) then
w.redraw()
end
Tables x Objects
Tables are dynamically created objects.
in the sense of Hoare
list = {value=v, next=list}
list
old list
...
value - v
next Lua and the Web
Objects
First-class functions+ tables = almost OO
Tables can have functions as fields
Sugar for method definition and call
Implicit parameter self
function a:foo (x)
...
end
a:foo(x)
sugar
a.foo = function (self,x)
...
end
sugar
a.foo(a,x)
My second Lua program
C = 2; -- rain/t
K = 0.4; -- flow coefficient
q = 0; -function rain (t)
if (t < 10) then
return 4 – 4*math.cos(math.pi*t/10);
else
return 4 – 4*math.cos(math.pi*(t-10)/10);
end
end
-for time = 0, 20, 1 do
-- soil water
q = q + rain(time) - K*q;
end
-- report
print(“q = "..q);
Standard libraries
Basic
String
Table
Math
IO
OS
Debug
Coroutine
Basic
Basic functions
print
type
setmetatable
pairs
String
String manipulation
pattern matching
string.find
string.gsub
Table

Function for table manipulation
 table.insert
 table.remove
 table.sort
rain
rain
rain
Itacolomi do Itambé
Peak
Lobo’s Range
My third Lua program
Define a two-dimensional grid
Make it rain on the grid
Let water flow downwards
N
TerraME: Vision
An Earth´s environment can be represented as a synthetic
environment where analytical entities (rules) change the
space properties in time.
Several interacting entities share the same spatiotemporal
structure.
TerraME architecture & applications
RondôniaModel
DinamicaModel
TROLLModel
CLUEModel
TerraME Language
TerraME Compiler
TerraME Virtual Machine
TerraLib Enviromental
Modeling Framework
C++ Signal
Processing
librarys
TerraLib
C++
Mathematical
librarys
C++
Statistical
librarys
TerraME Runtime Environment
TerraME INTERPRETER
• model syntax semantic checking
• model execution
TerraView
• data acquisition
• data visualization
• data management
• data analysis
LUA interpreter
TerraME framework
data
model
model
TerraME/LUA interface
MODEL DATA
Model
source code
TerraLib
database
data
Eclipse & LUA plugin
• model description
• model highlight syntax
The Scale Concept in TerraME
Scale is a generic concept that includes the spatial, temporal, or
analytical dimensions used to measure any phenomenon.
Extent refers to the magnitude of measurement.
Resolution refers to the granularity used in the measures.
(Gibson et al. 2000)
TerraME allows nested scales
Nested scales are necessary for humanenvironmental models
Diverse space partitions can have
different scales
TerraME extensions to Lua
To build spatial dynamic models, TerraME includes new
value types in LUA using the constructor mechanism.
These values are: CellularSpace, Cell, Neighbourhood
Cellular Space
A geographical area of interest, divided into a grid.
Each cell in the grid has one or more attributes.
CellularSpaces are stored and retrieved from a TerraLib
database
Loading Data
-- Loads the TerraLib cellular space
csCabecaDeBoi = CellularSpace
{
dbType = "ADO",
host = “localhost",
database = "c:\\cabecaDeBoi.mdb",
user = "",
password = "",
layer = "cellsLobo90x90",
theme = "cells",
select = { “height", “soilWater", “capInf" }
}
csCabecaDeBoi:load();
csCabecaDeBoi:loadMooreNeighbourhood;
GIS
Creating temporary cellular spaces
myCellSpace = CellularSpace{ database = "",
theme = "“ }
for i = 1, 2, 1 do
for j = 1, 2, 1 do
c = Cell{ soilType = “latosolo” }
c.x = i;
c.y = j;
myCellSpace :add( c );
end
end
Referencing cells
A CellularSpace has a special attribute called cells. It is
a one-dimensional table of references for each Cell
in the CellularSpace
-- c is the seventh cell in the cellular space
c = csCabecaDeBoi.cells[ 7 ];
-- Updating the attribute “infcap” from the
seventh cell
c.infcap = 10;
print (csCabecaDeBoi.cells[7].infCap);
Database management
-- loads a cellular space
csAmazonia:load();
csAmazonia:loadNeighbourhood("Moore");
-- save (time, themeName, attrTableName) -for time = 1, 10,1 do
csAmazonia:save(time, “sim", {"water"});
end
TerraME INTERPRETER
• model syntax semantic checking
• model execution
TerraView
• data acquisition
• data visualization
• data management
• data analysis
LUA interpreter
TerraME framework
data
model
model
TerraME/LUA interface
MODEL DATA
Model
source code
TerraLib
database
data
Eclipse & LUA plugin
• model description
• model highlight syntax
The Cell type
A Cell value has two special attributes: latency and past.
The latency attribute registers the period of time since the last
change in a cell attribute value.
The past attribute is a copy of all cell attribute values in the
instant of the last change.
if(cell.cover == "abandoned" and cell.latency
>= 10 ) then cell.cover = "secFor"; end
cell.water = cell.past.water + 2;
Traversing a Cell Space
"for...end" statement:
"for i, cell in pairs (csQ.cells) do
...end”.
The i and cell variable in the statement are the index and
the value of a cell inside the cells attribute from the
cellular space csQ.
for i, cell in pairs( csQ.cells ) do
cell.water = cell.past.water + 2;
end
Traversing a Cell Space
forEachCell(cs, function())
Applies the chosen function to each cell of the cellular space.
This function enables using different rules in a cellular space.
forEachCell(csQ, function(cell)
cell.Water = cell.past.Water + 2;
return true; end);
Isotropic neighbourhoods in cell spaces
Von Neumann
Neighborhood
Moore Neighborhood
Traversing a Neighbourhood
csq:loadNeighbourhood(“Moore”);
forEachCell(csQ,
function(cell)
count = 0;
forEachNeighbour(cell, 0,
function(cell, neigh)
if (neigh.past.value == 1 and
neigh ~= cell) then
count = count + 1;
end
end;
); -- for each neighbor
Synchronizing a cell space
tn
tn+1
rule
count = 0 ;
for i, cell ipairs( csValeDoAnary ) do
if ( cell.past.sim_cover == 1 ) then
cell.sim_cover = 0;
count = count + 1 ;
end
end
cell.synchronize( );
?
print(“Number of deforested cells: ”.. count);
Synchronizing a cell space
TerraME keeps two copies of a cellular space in memory: one
stores the past values of the cell attributes, and another
stores the current (present) values of the cell attributes.
The model equations must read (the right side of the equation
rules) the past copy, and must write (the left side of the
equation rules) the values to the present copy of the cellular
space.
At the correct moment, it will be necessary to synchronize the
two copies of the cellular space, copying the current attribute
values to the past copy of the cellular space.
Synchronizing a cell space
tn
tn+1
rule
TerraME keeps two copies of a cellular space in memory: one stores the
past values of the cell attributes, and another stores the current
(present) values of the cell attributes.
The model equations must read (the right side of the equation rules) the
past copy, and must write (the left side of the equation rules) the values
to the present copy of the cellular space.
At the correct moment, it will be necessary to synchronize the two
copies of the cellular space, copying the current attribute values to the
past copy of the cellular space
Synchronization
Always read from the past
Always write to the present
….
csQ:syncronize();
Trajectories: spatial patterns of change
modeller defined functions which map indexes (atributtes) to
geo-objects (cells).
it = Trajectory{ myCellSpace,
function(cell)
return cell.cover == "forest“
end,
function( c1, c2 )
return c1.dist_roads < c2.dist_roads
end
}
Quais objetos são mais proximos?
Which objects are NEAR each other?
Using Generalized Proximity Matrices (GPM)
Consolidated area
Emergent area
TerraME neighborhoods are graphs
Euclidean space
Open network
Closed network
D1
D2
[Aguiar et al., 2003]
Create or load neighborhoods
-- Create a Moore neighborhood
createMooreNeighborhood( myCellSpace, “neighName” )
-- Create a 3x3 neighborhood
create3x3Neighborhood(myCellSpace, filterF() , weightF(),
name )
-- Create a MxN neighborhood
createMxNNeighborhood( M, N, myCellSpace,filterF(),
weightF(), name )
-- Load neighborhood from TerraLib database
myCellSpace: loadTerraLibGPM(“myGPM");
-- Load neighborhood from TerraLib GAL files
myCellSpace:loadGALNeighborhood("c:\\myNeigh.gal")
Building neighborhoods between cell spaces
spatialCoupling( M, N, cs1,cs2, filterF, weightF, name )
filterF(cell, neigh)  Boolean
wheighF(cell, neigh)  Real
Example: neighborhood to simulate rain
-- Creates a 3x3 Neighborhood based on the cell "slope"
-- only lower neighbors are considered
create3x3Neighborhood(
csQ,
function(cell,neigh)
return neigh.altimetry < cell.altimetry
end,
function(cell, neigh)
return (cell.altimetry - neigh.altimetry)/
(cell.altimetry + neigh.altimetry)
end,
"slope"
);
Saving cell spaces as images
-- attribute used to generate the image
attr_name = "estado"
-- values that the attribute can have
attr_value = {0,1,2}
-- color pallete
attr_color = {{0,255,0},{255,0,0},{0,0,0}}
-- directory where images will be saved
path = "c:\\TerraME\\Results“
-- size of the cell in pixels
cellSize = 2
-- load the o espaco celular do banco de dados TerraLib
........................
for t = 1, 100 do
CStoPNG(myCellSpace,
attr_name,t,path,cellSize,attr_value,attr_color)
end
rain
rain
Itacolomi do Itambé
Peak
N
rain
Lobo’s Range
Picture direction
Itacolomi
do Itambé Peak
Lobo’s Range
Demo: Rain Drainage Model



Database: c:\\TerraME\\Database\\CabecadeBoi.mdb
Model: c:\\TerraME\\Modelos\\demo4_chuva_geoBD.lua
Model: c:\\TerraME\\Modelos\\demo7_chuva_geoBD.lua
Simulation
Result
(36 min.)
Demo: Fire propagation
Database: c:\\TerraME\\Database\\db_emas.mdb
Model: c:\\TerraME\\Modelos\\demo6_FireSpreadModel.lua
INERTE
QUEIMANDO
CA 1
CA 2
CA 3
CA 4
CA 5
CA 1
0.100
0.250
0.261
0.273
0.285
CA 2
0.113
0.253
0.264
0.276
0.288
CA 3
0.116
0.256
0.267
0.279
0.291
CA 4
0.119
0.259
0.270
0.282
0.294
CA 5
0.122
0.262
0.273
0.285
0.297
Demo: Desflorestamento na Amazônia


Banco de dados: c:\\TerraME\\Database\\amazonia.mdb
Modelo: c:\\TerraME\\Modelos\\demo3_desflorestamento_save.lua
References
Carneiro, T., 2006. Nested-CA: a foundation for multiscale
modeling of land use and land change., in PhD Thesis in
Computer Science. National Institute of Space Research: São
José dos Campos, Brazil.
Carneiro, T.; Câmara, G., 2007. A Gentle Introduction to
TerraME. INPE Report, 2007.
Ierusalimschy, R. 2006. Programming in Lua (2nd edition). Rio de
Janeiro, Lua.Org.

similar documents