Document

Report
Operaciones con
Polinomios
LIC. MAT. HELGA KELLY QUIROZ CHAVIL
División:
Algoritmo de la
división
Leyes de los
exponentes
Leyes de los signos
Suma:
Reducción de
Términos
semejantes
Operaciones
con
Polinomios
Multiplicación
• Propiedad
distributiva
• Leyes de los
exponentes
• Leyes de los signos
Resta:
•Signo “–” precediendo
un signo de agrupación
•Reducción de términos
semejantes
Suma y resta de Polinomios
1. La suma o la resta de dos monomios con
grados distintos es un binomio.
2. La suma o la resta de tres monomios con
grados distintos es un trinomio.
3. Para sumar polinomios tenemos que asociar
términos semejantes y sumar o restar sus
coeficientes.
Ejemplos:
Sean los siguientes polinomios P(x) = 7x2 – 5x4
+3x – 15 y Q(x) = 5x3 – 7 + 9x2 – 6x
Hallar
a. P(x)+Q(x)
b. 2P(x)+3Q(x)
c. P(x)-5Q(x)
Ejemplos:
Calcular:
a) (8x2 – 2x + 1) – (3x2 + 5x – 8) =
b)(2x3 – 3x2 + 5x – 1) – (x2 + 1 – 3x) =
c) (7x4 – 5x5 + 4x2 –7) + (x3 – 3x2 – 5 + x) – (–3x4 +
5 – 8x + 2x3) =
Multiplicación de Polinomios
Multiplicación de expresiones algebraicas
Se cumple la ley conmutativa que dice que el
orden de los factores no altera el producto:
axb=bxa
También se cumple la ley distributiva:
a x b x c = a (b x c) = c (a x b)
Ley de los signos
El producto de términos con signos iguales da
como resultado otro término con signo positivo, y
el producto de términos con signos diferentes da
como resultado otro término con signo negativo.
Multiplicación de monomios por polinomios
Para multiplicar monomios por polinomios se
aplica la ley distributiva de la multiplicación con
respecto a la suma o la resta
Ejemplo:
Multiplicar:
1. 6 3 (4 3 + 6 2 −  5 + 1/2 4 )=
2. 3x4 ( 5x3 - 2x + 2x2 – x + 3)=
Multiplicación entre polinomios
Para multiplicar dos polinomios se ordena el polinomio
multiplicando y se efectúan los productos entre todos los
términos del multiplicando por cada uno de los términos
del multiplicador, se tiene en cuenta la ley de los signos y
se reducen los términos semejantes.
Ejemplos : Multiplicar
(6x-4y)(5x+3y)
(6 3 + 4 2 + )(6 2 −  5 + 2 4 )=
Casos particulares:
a)
Cuadrado de un binomio:
b) Cubo de un binomio:
c)
Suma por diferencia de binomio
División de polinomios por monomios
Ejemplos:
Dividir:
1) (6 6 − 4 5 +6 4 −8 3 + 2 2 )≑2 2
2) (12 7 − 24 6 −6 4 +4 3 + 16)≑4 2
3) (3/2 6 − 1/3 5 +27 4 −18 6
− 9 3 )≑3 3
División entre polinomios
Ejemplos:
Resolver la división de polinomios:
P(x) = 4x3 −8x - 4
Q(x) = 4 x + 4
Ejemplos:
Resolver la división de polinomios:
a) (6x5 + 2x4 – 23x3 + 11x2 + 12x – 3) : (3x3 –
5x2 + 3)
b) (4x3 – 2x2 + 8x – 4) : (2x2 – 4x + 1)
c) (x3 – x2 – x – 2) : (x2 + x + 1)
d) (6x3 – 5x2 + x) : (2x – 1)
TEOREMA DEL RESTO
Si C(x) es el cociente y R(x) el resto de la división de un
polinomio cualquiera P(x) entre el binomio (x – a),
aplicando el algoritmo de la división:
P(x) = C(x) · (x – a) + R(x)
Luego, el valor numérico de P(x), para x = a, es igual al
resto de su división entre x – a, es decir:
P(a) = C(a) · (a – a) + R(a) = R(a)
Ejemplos:
Calcular el resto de x5 + 3x4 – 2x3 + 4x2 -2x +2 entre x+3
Ejemplos:
1. Hallar el resto utilizando el teorema:
(x4 – 16) : (x – 2) =
(–x2 + x + 1) : ( (x + 3) =
(x5 + x – 2x3) : (x – 1) =
2. Hallar el valor de m y n para que el polinomio
P(x) =  3 +  2 +  + 6 sea divisible por (x + 3)
y por (x – 2).
Métodos de Factorización
Factor común de dos o más términos
El factor común de dos o más términos es el término
formado por el mcd de los coeficientes numéricos de los
términos y las potencias de menor exponente de
literales comunes a todos ellos.
Ejemplo:
Factorizar el polinomio:
las
Ejemplos:
Factorizar:
a) (x5 y+ 2x3 y – 8)
b) (6x5 y4 – 24x3 y2 + 12x 3 – 3 5  6 )
c) (16x8 y5 – 24x4 y3 + 44x 6 – 40 4  8 )
d) (25x5 y5– 20x3 y8 + 35x 5 – 45 8  7 )
ASPA SIMPLE
Es un método que permite factorizar trinomios de
la forma
ax2 +bxy +cy2
Cuya solución es:
ax2 +bxy +cy2
Ejemplos:
Resolver:
a) x2 + 5x + 6
b) x2 -7x -8
c)
x2 +9x + 10
MÉTODO DEL ASPA DOBLE
Se utiliza para factorizar polinomio de la
forma
Ejemplo: Factorizar:
Método de Paolo Ruffini
Ejemplo: Factorizar
Solución:
Divisores del término independiente
+
+
+
Posibles “ceros”: 1, 2, 4
Se anula para x=1 entonces x-1 es el factor
Teorema fundamental del álgebra
Un polinomio de grado n tiene exactamente n
raíces reales e imaginarias
Cálculo de raíces de un polinomio
Recordamos que un número a es raíz de un
polinomio, si el polinomio se anula para ese valor,
o sea, P(a)=0
Cálculo de la raíz de un polinomio de grado 1
Se calcula de la siguiente manera:
Ejemplo: Hallar la raíz del polinomio
Cálculo de las raíces de un polinomio de grado 2
Sus raíces x1 y x2 se obtienen igualando a
cero el polinomio de forma
aplicando la fórmula tenemos :
Ejemplos:
Dado el polinomio
Solución:
.
hallar sus raíces
Ejemplos
Resolver:
Ecuaciones e Inecuaciones
Ecuaciones de primer grado
Se llaman ecuaciones a igualdades en las que
aparecen
número
relacionados
y
letras
mediante
matemáticas.
Ejemplo:
7 (x + 1) – 4 (x + 3) = x – 9
(incógnitas)
operaciones
Ejemplo: Resuelve las siguientes ecuaciones:
a)9x – 45 + 4x – 16 = 4
b)3 · (x – 2) + 9 = 0
c) 8x + 7 – 2x + 5 = 4x + 12 – (x – 30)
Ecuaciones Fraccionarias
Ejemplos: Resolver:
a)
c)
d)
Ecuaciones de Segundo Grado:
Es aquella ecuación polinomial que se reduce a la
forma general:
ax2 + bx + c = 0 ; a0
La ecuación de 2do Grado posee dos “raíces” que
cumplen con la ecuación.
Ejemplos:
Hallar sus raíces
a)  2 – 25 = 0
b)  2 + 3x = 0
c)  2 – 6x + 5 = 0
d) 4x2 + 5x – 6 = 0
Intervalos
Intervalo abierto
Intervalos abierto (a,b), es el conjunto de
todos los números reales mayores que a y
menores que b
(a,b)={x ∊R/a‹x‹b}
a
b
Intervalo Cerrado
Intervalo cerrado [a,b], es el conjunto de todos los
números reales mayores o iguales que a y menores
iguales que b.
[a,b]={x ∊R/a≤x≤b}
a
b
Intervalo semiabierto por la izquierda
Intervalo semiabierto por la izquierda (a,b], es el
conjunto formado de todos los números reales
mayores que a y menores o iguales que b
(a,b] = {x ∊R/a ‹ x ≤ b}
a
b
Intervalo semiabierto por la derecha
Intervalo semiabierto por la derecha [a,b), es el
conjunto de todos los números reales mayores o
iguales que a y menores que b
[a,b) = ]={x ∊R/a ≤ x ‹ b}
a
b
Semirectas
•Intervalo infinito abierto por la derecha
•Intervalo infinito cerrado por la derecha
•Intervalo infinito abierto por la izquierda
•Intervalo infinito cerrado por la izquierda
INECUACIONES LINEALES
Ejemplos: Resolver
3x–2<1
5x  2
3
-
x8

4
5+3x  4-x
x  14
2
-2
Resolver las siguientes desigualdades
3x – 1 ≤ x+7
 13x + 2 ≥ 10x + 35
 4x + 24 ≻ 2x + 54
 8x + 25 ≥ x – 33
 2x + 14 ≤ 3x + 26

INECUACIONES DE SEGUNDO GRADO
Determina la solución de las siguientes inecuaciones
cuadráticas:
1.
x2 – 1  0
2.
8x2 + 5x  0
3.
x(x – 3) – 2x(x – 2) + 3x < 0

similar documents