Temat: Kąty w kole

Report
Przygotował: Paweł Słaby
Dobrzeń Wielki, październik 2012r.
Kąty w kole mają swoje nazwy: są to
kąty wpisane i środkowe.
Kąty środkowe
Kąt środkowy w kole to kąt, którego wierzchołek jest
środkiem koła, a ramiona zawierają promienie tego koła.
Półproste o wspólnym początku w środku koła dzielą
płaszczyznę na dwa kąty. Każdy z nich jest kątem
środkowym.
Kąt środkowy (wypukły)
oparty na łuku ADC
Kąt środkowy (wklęsły)
oparty na łuku ABC
Ramiona kąta środkowego
dzielą okrąg na dwa łuki.
Łuk, który leży wewnątrz
kąta środkowego  jest
zaznaczony czerwoną
linią.
Mówimy, że kąt środkowy  jest oparty na tym łuku.
Kąty wpisane
Kąt wpisany w kole to kąt, którego wierzchołek znajduje
się na okręgu tego koła, każde z ramion przecina okrąg i
zawiera cięciwę okręgu.
Kąt wpisany jest zawsze mniejszy niż 1800.
Kąt wpisany (ostry)
Kąt wpisany (rozwarty)
Łuk wyróżniony na
rysunku leży wewnątrz
kąta wpisanego
Mówimy, że kąt wpisany
.
 jest oparty na tym łuku.
Ramiona kąta środkowego w kole
zawierają dwa promienie tego
koła. Rysowanie ramion kąta
środkowego możemy ograniczyć do
rysowania tych promieni.
Ramiona kąta wpisanego w okrąg
zawierają dwie cięciwy tego
okręgu. Rysowanie ramion kąta
wpisanego możemy ograniczyć do
rysowania odpowiednich cięciw.
Twierdzenia o kątach
środkowych i wpisanych
Kąt środkowy jest dwa razy większy niż kąt
wpisany oparty na tym samym łuku
Kąty wpisane oparte na tym samym łuku
mają równe miary
Każdy kąt wpisany oparty na średnicy
jest kątem prostym.
Trochę historii
Trochę historii
Tales z Miletu uważany jest
za jednego z „siedmiu
mędrców” czasów
antycznych i za ojca nauki
greckiej. Przypisuje mu się
odkrycie twierdzenia
Talesa, a także twierdzenia,
że kąt wpisany oparty na
średnicy jest kątem
prostym.
Zadanie 1
Na których rysunkach zaznaczono kąty środkowe, a na
których wpisane?
Zadanie 2
Jakie miary mają kąty:  i  . Odpowiedź uzasadnij.
a)
b)
Zadanie 3
Oblicz miary kątów:  ,  ,  .
  140
0
  120
0
  2400
  900
  400
  3200
Zadanie 4
Oblicz ile stopni ma kąt środkowy, a ile wpisany,
oparty na:
1
2
a) okręgu Odp. 40 ; 20 b) okręgu Odp. 240 ;120
9
3
Zadanie 5
Oblicz jaki kąt środkowy tworzą
duża i mała wskazówka o godzinie:
a) 1000
Odp. 60
a) 1230 Odp. 165
Zadanie 6
Oblicz miary kątów:  ,  ,  .
  550
  600
  1300
  1100
  200
  2400
Zadanie 7
Oblicz miary kątów wewnętrznych wielokątów.
Zadanie 8
Dwie przecinające się średnice tworzą kąty, z
których jeden ma miarę 54°. Zrób odpowiedni
rysunek i oblicz miary pozostałych kątów. Jak
nazywają się te kąty?
Zadanie 9
Suma miar kątów: wpisanego i środkowego opartego
na tym samym łuku jest równa 210°. Jaką miarę ma
każdy z tych kątów?
Pytania testowe
Pytanie 1
1p
Pytanie 6
2p
Pytanie 2
2p
Pytanie 7
1p
Pytanie 3
2p
Pytanie 8
1p
Pytanie 4
2p
Pytanie 9
1p
Pytanie 5
2p
Pytanie10
2p
Pytanie11
1p
Pytania testowe 2p
10. Ile wynosi miara kąta:  . Odpowiedź uzasadnij.
Powrót test
Pytania testowe 2p
2. Oblicz miarę kąta  .
Powrót test
Pytania testowe 2p
3. Jaką miarę ma kąt środkowy stanowiący 20% koła?
Powrót test
Pytania testowe 2p
4. Jaką miarę ma kąt  ? Odpowiedź uzasadnij.
Powrót test
Pytania testowe 2p
5. Łuki AB i BC są równe. Kąt x ma miarę:
Powrót test
Pytania testowe 2p
6. Na którym rysunku poprawnie podano miary kątów?
Powrót test
Pytania testowe 1p
1. Jaki kąt nazywamy kątem środkowym w kole?
Powrót test
Pytania testowe 1p
7. Jaki kąt nazywamy kątem wpisanym w kole?
Powrót test
Pytania testowe 1p
9. Co możesz powiedzieć o kącie wpisanym w koło
opartym na średnicy?
Powrót test
Pytania testowe 1p
8. Co możesz powiedzieć o kącie środkowym i wpisanym
opartych na tym samym łuku?
Powrót test
Pytania testowe 1p
11. Co możesz powiedzieć o miarach kilku kątów
wpisanych opartych na tym samym łuku?
Powrót test
Praca domowa
Zadanie 1: Oblicz miary kątów:
, , .
Zadanie 2
Różnica miar kątów wpisanego i środkowego opartego
na tym samym łuku jest równa 52°. Jaką miarę ma
każdy z tych kątów?
Zadanie 3
Dane są dwa kąty wpisane takie, że miara jednego z
nich jest cztery razy większa od miary drugiego.
Kątom tym odpowiadają kąty środkowe, których suma
miar jest równa 100°. Oblicz miary wszystkich tych
kątów.
Zadanie 4
Oblicz miary kątów:  i  przedstawionych na
rysunku?
300 600
=300
=450 900
450 450
600
Opracował: Paweł Słaby
Zespół Szkół w Dobrzeniu Wielkim
Październik 2012r.

similar documents