Case 1 - Science for Energy Scenarios

Report
ENERGY TRANSITION IN FRANCE AND
DEEP DECARBONISATION SCENARIOS:
EXPERIENCES AND AGENDA
P. Criqui, CNRS, PACTE-EDDEN
A prelude to
decarbonisation scenarios
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
2
Looking back: King Coal again !
Production d'énergie primaire (Mtep)
4500
4000
3500
3000
Oil
Gas
2500
Coal
2000
Hydro
Nuclear
1500
Other Ren
1000
500
1965
1967
1969
1971
1973
1975
1977
1979
1981
1983
1985
1987
1989
1991
1993
1995
1997
1999
2001
2003
2005
2007
2009
2011
0
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
3
Looking back: CO2 emissions after Kyoto
Emissions de CO2 (Mt)
Emissions de CO2 (Mt)
10 000
9 000
1 400
Kyoto
8 000
7 000
6 000
1 200
US
France
1 000
Germany
United Kingdom
5 000
Japan
4 000
Brazil
800
Brazil
France
600
Germany
China
3 000
2 000
1 000
0
P. Criqui – CNRS PACTE-EDDEN
United Kingdom
400
India
Former Sov Union
European Union #
200
0
Les Houches, 3rd of February 2014
4
Looking forward: exploratory and normative scenarios
Source SHELL: Mountains and Oceans scenarios
5
Looking forward: the plausible and the desirable
 BaU: from 2000 to 2050,
 A responsible climate policy
population is multiplied by 1.5,
GWP by 4 , TPES by 2;
the O&G levelling-off induces
the comeback of coal
requires: a lower total demand
(-20% / BaU), a balanced energy
supply mix and a massive CCS
development
World Prim ary consum ption
World Primary consumption - BL
25
25
Other Renew ables
Biomass
Nuclear
Coal, lignite
Natural gas
Oil
20
4°C
20
15
Other Renew ables
Biomass
Nuclear
Coal, lignite
Natural gas
Oil
2°C
Gtoe
Gtoe
15
10
10
5
5
0
0
2000
2010
2020
2030
2040
2050
2000
2010
2020
2030
2040
Source: POLES model, EDDEN
P. Criqui – CNRS PACTE-EDDEN
21 Février 2013
Les Houches, 3rd of February 2014
6
6
2050
Tools: IAMs in the FP7 AMPERE project
Source: Elmar Kriegler PIK, AMPERE Venice meeting, 23-25 May 2012
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
7
FP7 AMPERE: Diagnostics
240
200
Source: Elmar Kriegler PIK, AMPERE Venice meeting, 23-25 May 2012
8
Scenarios viewed from SPM T5 of IPCC-AR4
ΔT°C
6
Baseline
Cat. 6
5,5
5
4,5
4
3,5
Cat. 3
3
2,5
Cat. 2
Global
Regime
Muddling
Cat. 5
Through
Europe
Cat. 4
Alone
0 €/tCO2
40 €/tCO2
Cat. 1
2
1,5
1
400 €/tCO2
0,5
0
-100 -90% -80% -70% -60% -50% -40% -30% -20% -10% 0%
%
10% 20% 30% 40% 50% 60% 70% 80% 90%
100
%
110
%
120
%
Em. 2050/2000
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
9
Philosophical background:
the “Science and Policy Nexus”
 Extending on the Edenhofer and Kowarsch (2013) contribution on
“Science and policy advice”, one can identify 4 types of visions:
1. Positivist-scientist: facts are facts and there is one best solution for any
problem; scientists are the best collocated for taking the right decisions (Hans
Jonas’ “government by the scientists”; in economics, W. Nordhaus with the
Intertemporal Cost-Benefit Analysis of climate policies
2. Positivist-decisionist: there is one best solution, but in everyday’s life policymakers are “muddling through” while arbitraging between scientific statements,
industries’ short-term interests and social acceptability constraints
3. Constructivist-relativist: facts are entwined with value judgements and for many
social scientists (“science studies”) every discourse is socially constructed; this
applies to the scientific discourse that do not have a natural pre-eminence (B.
Latour: we can politically decide that there is a human influence on climate)
4. Pragmatic-enlighted model: different solutions exist to any problem, depending
on value judgements; but the role of scientists is to identify the problems and the
solutions in a given context, while documenting and assessing their consequences
(John Dewey’s process of scientific inquiry)
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
10
 Case 1: the four trajectories in the deliberative
framework of the National Debate on Energy
Transition (DNTE)
 Case 2: transition scenarios and technologies
in the National Alliance for Energy Research
(ANCRE) exercise
 Deep Decarbonisation Pathways: a research
agenda
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
11
The National Debate on Energy Transition in 2013
 This new step in French energy policy, with a
new law expected in 2014, has been prepared
by a “deliberative process” that took place in
the first half of 2013:
– A coordination committee
– A National Council (7x16 members from NGOs,
Trade-Unions, Business, MPs, Mayors...)
– A group of 45 experts in charge of producing relevant
and validated analytical materials
– A citizen and an industry group...
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
12
A great diversity of energy scenarios to 2050 for France
 Hypotheses and results have been
Consommation d'électricité total (TWh)
gathered from 16 pre-existing
scenarios to 2050
800
total electricity consumption varies
from 450 TWh today to between 280
and 820 TWh in 2050
700
DGEC AME
Negawatt
GRDF
Global Chance
TWh
 The main goal of the scenario
600
Negatep
500
RTE Median
RTE Nouveau Mix
400
working group and of its experts has
been to:
1. identify a limited number of
structural “trajectories”
P. Criqui – CNRS PACTE-EDDEN
ADEME
900
 A very wide range of energy futures:
2. evaluate them in a
mulitcriteria approach
Greenpeace
CIRED Acceptable renforce
CIRED Acceptable nucl haut
300
CIRED Acceptable nucl bas
200
CIRED Acceptable reference
100
ANCRE SOB
0
ANCRE ELE
2009
2014
2019
2024
2029
2034
Les Houches, 3rd of February 2014
2039
2044
2049
ANCRE DIV
13
Four families of scenarios or
“trajectories” have finally
been identified
BaU
BaU
Transition
Very low demand
(-50% en 2050)
Priority to
Renewable En.
Diversification
Four Trajectories:
SOBriety
EFFiciency
Explored by 15
scenarios:
négaWatt
Greenpeace
WWF
Global Chance
P. Criqui – CNRS PACTE-EDDEN
Low demand
(-20% en 2050)
Diversification
DIVersity
Priority to
Nuclear Energy
DECarbonization
ADEME
ANCREdiv
GRDF
RTEnouvmix
ANCREsob
DGECams-o
ENCILOCARBrenf
Négatep
RTEmed
ANCREele
UFE
Les Houches, 3rd of February 2014
14
National and international commitments
 Two commitments or policy targets are structuring the different trajectories:
–
the Factor 4 in emissions (-75% in 2050 / 1990)
–
the reduction in the share of nuclear energy to 50% by 2025, target set by President FH
 Only the “Decarbonization by electricity” scenario doesn’t meet the second target of
50% nuclear
 All scenarios meet the “Factor 4 in emissions” target, but some choose a teleological
approach while others adopt a “realistic” approach to changes in the system
544 MtCO2 in 1973 (-30%)
Emissions annuelles de CO2 énergie
450
400
Trajectoire référence
350
Trajectoire DEC
MtCO2eq
300
Trajectoire DIV
250
Trajectoire EFF
200
Trajectoire SOB
150
Facteur 4 sur les
émissions énergie
100
50
0
2010
2015
2020
P. Criqui – CNRS PACTE-EDDEN
2025
2030
2035
2040
2045
2050
Les Houches, 3rd of February 2014
15
What level of reduction in energy demand ?
 A strong divergence emerged in the Debate, some favouring a strong
reduction in energy demand (-50% to be included in the future law),
while other advocated a more moderate reduction, compensated by
more low carbon supply
dont électricité (TWh)
800
700
Trajectoir
e DEC
TWh
600
500
Trajectoir
e DIV
400
Trajectoir
e EFF
300
Trajectoir
e SOB
200
100
0
2010
P. Criqui – CNRS PACTE-EDDEN
2015
2020
2025
2030
2035
Les Houches, 3rd of February 2014
2040
2045
2050
16
Structure of the power generation mix
% nucléaire dans production électricité
80%
70%
Trajectoire DEC
60%
Trajectoire DIV
%
50%
Trajectoire EFF
40%
Trajectoire SOB
30%
Objectif 50%
20%
10%
0%
2010
2015
2020
2025
2030
2035
2040
2045
2050
% ENR dans production d'électricité
100%
90%
80%
70%
Trajectoire DEC
%
60%
Trajectoire DIV
50%
Trajectoire EFF
40%
Trajectoire SOB
30%
20%
10%
0%
2010
2015
P. Criqui – CNRS PACTE-EDDEN
2020
2025
2030
2035
2040
2045
2050
Les Houches, 3rd of February 2014
17
A framework for the assessment of transition trajectories
Trajectoire
Critère
Exemple
1
Coûts et prix de
l'énergie
2
Investissement
3
Emploi, filières
4
Sécurité
d'approvisionnement
5
Ressources /
environnement
6
Santé / accidents
7
Changement climatique
8
Engagements
9
Résilience / flexibilité
10
Cohésion /
justice sociale
Electrification et
décarbonation
Demande stable et
diversification
Efficacité et
diversification
Sobriété et sortie du
nucléaire
DEC
DIV
EFF
SOB
Négatep
ANCRE div.
ADEME
négaWatt
11 Autonomie territoriale
12
 The role of the experts was in no way to
express their preference and even less to
choose one of the four trajectories
 Even the multi-criteria analysis couldn’t end
in a notation of the different categories of
impacts the scenario along the 12 criteria,
e.g. from (--) to (0) and (++)
 The main reason is the lack of quantified
indicators for highly complex issues, such
as vulnerability to crises or accidents,
robustness of the electricity system or
environmental and health impacts
 Only some criteria, mostly connected to
economic sectoral impacts, were quantified
and compared
Faisabilité macroéconomique et technol.
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
18
Quantification of the transition investment: 1. retrofitting
 The energy retrofitting of existing buildings is a key battlefield in the energy
transition
 Scenarios may differ in the share of the total stock that is retrofitted so as in the
depth (performance) of each operation
 Many obstacles – financing, transaction costs – will have to be overcome
Rénovation moyenne (-44% en 2050)
350
-44%
300
MI ap. 75
350
LC av. 75
300
MI av. 75
250
Rénovation renforcée (-69% en 2050)
LC ap. 75
-69%
250
200
200
150
150
100
100
50
50
0
0
2010
2015
2020
2025
2030
2035
2040
2045
2050
2010
Besoins de financement en M€/an
2020
2025
2030
2035
2040
2045
2050
Besoins de financement en M€/an
16 000
16 000
14 000
14 000
12 000
12 000
10 000
10 000
8 000
8 000
6 000
6 000
4 000
4 000
2 000
2 000
0
2015
0
2010
2015
2020
2025
2030
2035
P. Criqui – CNRS PACTE-EDDEN
2040
2050 RENOVsim
2010
2015
Source
2045
2020
2025
2030
Les Houches, 3rd of February 2014
2035
2040
2045
2050
19
Quantification of the transition investment: 2. power sector
 Investment dynamics are key elements in the assessment of the different
scenarios; in the case of France the phasing in of Variable Renewable Energies
and of New Nuclear has major impact
 A dedicated tool – ELECsim -- has been deigned for describing these trajectories
DEC
DIV
Investissement annuel (M€2010)
Investissement annuel (M€2010)
30 000
30 000
Nucl. Nouveau
25 000
25 000
Hydraulique
Eolien onshore
20 000
20 000
Eolien offshore
15 000
15 000
Photovoltaique
Autres Ren.
10 000
10 000
Gaz & Backup
sans CCS
Total 2013-40
5 000
5 000
Eolien + Solaire
0
EFF
SOB
Investissement annuel (M€2010)
30 000
0
Investissement annuel (M€2010)
45 000
40 000
25 000
35 000
20 000
30 000
25 000
15 000
20 000
10 000
15 000
10 000
5 000
5 000
0
0
Source ELECsim
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
20
Macro-economic impacts: the problem of employment
 Assessing the impact of Transition Trajectories on employment is a key issue; this should
lead to quantify direct and indirect employment, created and destructed...
 The question of the induced employment after the taking into account of all
macroeconomic, competitiveness and external trade effects is the most tricky one;
this all the more that the impact may clearly overcome the direct and indirect effect
 Detailed macroeconomic models may provide useful insights on the main mechanisms,
however their aggregate results still lack of robustness
 The key issue is: what is the level of energy efficiency investment that will best serve
households’ budget and industries’ competitiveness ???
Source: CIRED évaluation négaWatt
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
21
Impacts on the environment, land use, resources…
 In spite of many academic or applied research in the field of energy-
related environmental externalities (e.g. EU ExternE projects), the
capability to address the environmental impacts of energy scenarios
remains limited
 This should be a major issue for France. In the French transition
process, only a very limited set of impacts have been quantified
Surface nationale impactée par la production d'électricité hors
biomasse et hydroélectricité (km2)
3 000
2 500
km2
2 000
1 500
Solaire PV
Eolien offshore
1 000
Eolien onshore
Nucléaire
500
Gaz
2010
P. Criqui – CNRS PACTE-EDDEN
2020
2030
2040
Trajectoire SOB
Trajectoire EFF
Trajectoire DIV
Trajectoire DEC
Trajectoire SOB
Trajectoire EFF
Trajectoire DIV
Trajectoire DEC
Trajectoire SOB
Trajectoire EFF
Trajectoire DIV
Trajectoire DEC
Trajectoire SOB
Trajectoire EFF
Trajectoire DIV
Trajectoire DEC
Trajectoire SOB
Trajectoire EFF
Trajectoire DIV
Trajectoire DEC
0
2050
Les Houches, 3rd of February 2014
22
Lessons from the scenario comparison exercise
 Each submitted scenario reflects a “worldview”, loaded with value
judgements, but the common reporting templates allowed to
identify the four trajectories and provided a consistent basis for
the comparison
 Although incomplete, the multi-criteria assessment approach
enabled discussion among the different stakeholder categories
on clearly identified hypotheses and outcomes
 By lack of sufficient analytical background – but also due to the
nature of the problem – the debate on the realism, feasibility,
desirability of the trajectories remained open...
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
23
 Case 1: the four trajectories in the deliberative
framework of the National Debate on Energy
Transition (DNTE)
 Case 2: transition scenarios and technologies
in the National Alliance for Energy Research
(ANCRE) exercise
 Deep Decarbonisation Pathways: a research
agenda
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
24
ANCRE: National Alliance for Energy Research
 Created in 2009, the National Alliance for Energy Research allows
researchers from CNRS, CEA, IFPEN, Universities and other
research organisms to exchange information and participate in
common activities on new energy technologies and solutions
 Its first goal was to increase the coordination of activities... and
turn pre-existing competition into cooperation
 In 2012-2013 it developed a new activity on foresight and
scenarios with the aim of providing feasible and cost-effective
scenarios, based on the contributions of high-level expert
Working Groups
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
25
ANCRE: The Working Groups
 ANCRE has 10 working groups organized by type of
energy source or consumption sector:
• WG1 – Biomass energy
• WG2 – Fossil sources and geothermal energy
• WG3 – Nuclear technologies
• WG4 – Solar technologies, PV and CSP
• WG5 – Wind and marine energies
• WG6 – Transport
• WG7 – Building
• WG8 – Industry and agriculture
• WG9 – Socio-economics and scenarios
• WG10 – Networks and storage
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
26
ANCRE: The 2012-2013 scenarios
 By fall 2012, prior to the DNTE process, ANCRE WG9 had defined
three scenarios : SOBriety, ELEctrification, DIVersity
 The DIV scenario has been
1. Sobriété renforcée
chosen as representative for
the Diversity trajectory
in the National Debate
 Structuring targets are Factor 4
in emissions in 2050 and 50%
nuclear production in 2025
 A fourth scenario then relaxed
the 50% constraint
Référence
DGEC
WG9 on scenarios:
Nathalie Alazard-Toux*, Patrick Criqui, Jean-Guy Devezeauxǂ
Alain Le Duigouǂ, Elisabeth Le Netǂ, Alban Liegeard*,
Daphné Lorne*, Sandrine Mathy, Philippe Menanteau,
Henri Safaǂ, Olivier Teissier, Benjamin Topperǂ
* IFPEN,  CNRS, ǂ CEA,  CSTB
P. Criqui – CNRS PACTE-EDDEN
2. Décarbonisation
par l’électricité
Les Houches, 3rd of February 2014
3. Vecteurs diversi
27
A methodology for across sectors
technico-economic assessment
 The balance between changes in behaviours and in
technologies has been set on a sector by sector basis while
trying to avoid extreme changes in behavioural patterns
 After identification of key activity/energy intensity parameters and
of the possibilities of the supply-transformation system,
simulations showed that the Factor 4 is an attainable but
extremely ambitious target
 Going beyond the Factor 4 for energy, in order to compensate for
lesser reduction in other GHGs (agriculture) would involve
“game changers” i.e. breakthrough technologies
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
28
Transport
Transport: challenges inHypothèses
the different scenarios
technologiques
Energy
intensity
Efficacité
énergétique
des transports
de passagers
in passenger
transport
Développements technologiques transport
1.4
Sobriété
Renforcée
Indice (Tep/pkm)
1.2
1
0.8
Forte pénétration des solutions électriques
-30%
0.6
0.4
-65%
0.2
Développement de véhicules serviciels
adaptés aux parcours et à l’autopartage
Décarbonisation
par l’électricité
–2030 véhicules électrifiés représentent 65% des
ventes (1er véhicule = PHEV, 2ème véhicule = EV)
–A partir de 2030 les livraisons intra-urbaine sont
électriques (via politique publique)
Développement de l’Hydrogène
0
1990
2000
2010
Prolongement tendance
2020
SOB
2030
2040
– Couloir H2 pour les camions dès 2030
– Développement Bus H2, VP à partir de 2040
2050
ELE
DIV
Amélioration de l’efficacité énergétique
accélérée
-véhicules 2l/100km se généralisent dès 2030
Ruptures d’efficacité énergétique
VP 2L/100km :
Poids Lourds / Bus :
2025 véhicules disponibles
2040 généralisation
2030 -30% consommation (malgré
norme de dépollution)
P. Criqui – CNRS PACTE-EDDEN
Pénétration du gaz
Vecteurs
diversifiés
-2030 : Couloir GNL pour les camions et flotte captive
-2050 : 50% des Bus GNV, 25% des VP
Développement massif des bio-carburants
(maintien 1G et développement 2G)
-2030 : Production x 2,5 (6Mtep)
-2050 : Production x 6 (13Mtep)
Les Houches, 3rd of February 2014
29
Buildings: challenges in the different scenarios
Actual energy performance
Sobriété Renforcée
Parc « neuf » très performant dès 2015, respect immédiat de la RT2012 qui
s’améliore à nouveau en 2025 (nouvelle RT)
Parc rénové très performant dès 2015 (-70% sur la consommation de
chauffage / existant), pas d’effet rebond
Décarbonisation par
l’électricité
Parc « neuf » performant en 2015 (dérive +10% sur le niveau RT2012), qui
s’améliore en 2025 (nouvelle RT)
Parc rénové performant dès 2015 (-60% sur la consommation de
chauffage), pénalisé par un effet rebond de l’ordre de 10%
Vecteurs diversifiés
Idem ELE, la différenciation porte uniquement sur les vecteurs
énergétiques.
Innovations technologiques
Consommations unitaires - Résidentiel
120%
1. Matériaux (super isolants minces, vitrages performants, VMC, …)
2. Systèmes de chauffage performants (PAC réversibles, mini cogen,
stockages thermiques, chauffe-eau thermodynamiques)
3. Monitoring / suivi / optimisation des consommations
4. Approches systémiques intégrées, réseaux intelligents (elec – chaleur)
100%
80%
2010
60%
2015-25
2030-50
40%
20%
Besoin de formation et qualification des acteurs
0%
neuf
Existant
P. Criqui – CNRS PACTE-EDDEN
rénové
SOB
Les Houches, 3rd of February 2014
neuf
rénové
ELE / DIV
30
Industrie
Industry: efficiency gains
in energy intensive
Hypothèses
d’efficacité
industries and other industries
énergétique
Other industries
Energy intensive industries
(from SOB case)
Gains en éfficacités énergatiques des IGCE (%)
Gains en efficacités énergétiques des AI (%)
40
45
%
35
sidérurgie
40
30
aluminium
35
ammoniac
25
pétrochimie base
chlore
20
15
10
0
2010
2030
2040
2050
2060
Chimie
30
Non-métalliques
25
IAA
20
verre
15
sucre
Autres
10
BTP
TOTAL
2020
Métaux primaires
ciment
papier-pâtes
5
%
Equipements
5
0
2010
TOTAL
2020
2030
2040
2050
2060
L’amélioration potentielle de l’efficacité énergétique est de 10 à 40 % selon les secteurs (enquête
CEREN auprès des industriels)
L’amélioration est plus rapide pour les IGCE qui ont un intérêt économique immédiat
SOB : 95% du « gisement » atteint en 2050
ELE et DIV : 90% des gains atteints pour le scénario SOB en 2050
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
31
Electricity production: meeting the 50% target
In spite of the diversification
of the electricity system,
nuclear remains a major
source
800
Electricité (TWh)
700
Renouvelables
Nucléaire
Charbon
Gaz
Fioul
La gestion de l’intermittence est
assurée par:
• des solutions d’effacement (SOB)
• du stockage électrique (ELE)
• de la cogénération (DIV)
Scénarios
ANCRE 2030
Production électrique en 2030
2050
600
500
400
300
200
100
0
2010
Tendanciel
Sobriété
Electrification Diversification
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
32
An extended multi-criteria
assessment
Evaluation
multicritères
framework
Tableau synthétique
4 SCENARIOS + BaU
2010-2030
2030-2050
Période 2010-2030
Période 2030-2050
Critère
Coût et prix de l'énergie (augmentation comptée négatif)
Coût de l'énergie TTC*
Coût de production de l'électricité
Facture énergétique du pays (imports)
Dépenses énergétique des ménages
Investissements nécessaires (augmentation comptée négatif)
Investissements énergie
Investissements résidentiel tertiaire**
Investissements transport***
Investissements industrie
Emploi
Emploi énergie
Emploi résidentiel tertiaire
Emploi transport
Emploi industrie
Impact total (yc induit) sur l'emploi
Finances publiques
Effort en matière de financement public
Environnement et société
Emission de GES
Mobilisation de la biomasse
Usage des sols****
Environnement local et santé
Evaluation qualitative de l'impact sûreté-sécurité
Robustesse et résilience du système
Taux d'indépendance énergétique
Sécurité de l'approvisionnement*****
Diversification des ressources énergétiques
Dépendances ressources et matériaux stratégiques
Technologies développées
Effort accru nécessaire de R&D (France/Europe)
Technologies en rupture nécessaires
Création de filières nationales de high tech
P. Criqui – CNRS PACTE-EDDEN
SOB
ELE
DIV
ELEC-V
TEND
SOB
ELE
DIV
ELEC-V
TEND
−−
(En cours)
−
(En cours)
−
(En cours)
₊
₊
−
(En cours)
0
0
₊
₊
₊
₊
0
0
0
0
−−
(En cours)
₊₊₊
₊₊
−−
(En cours)
₊₊₊
₊₊
−−
(En cours)
₊₊₊
₊₊
−−
(En cours)
₊₊₊
₊₊
0
0
0
0
−
−−−−−
₊₊
na
−−−
−−−−
−
na
−−−
−−−−
0
na
−−−
−−−−
−
na
0
0
0
0
₊
−
−−−−
−−
na
₊
−−−−
₊₊₊
na
−−−−
0
na
₊₊
−−−−
−−
na
0
0
0
0
na
₊₊₊₊₊
(En cours)
na
(En cours)
na
₊₊₊₊
(En cours)
na
(En cours)
na
₊₊₊₊
(En cours)
na
(En cours)
na
₊₊₊₊
(En cours)
na
(En cours)
0
0
0
0
0
0
₊₊₊₊₊
−−−−−
na
(En cours)
0
₊₊₊₊
−
na
(En cours)
0
₊₊₊₊
−
na
(En cours)
0
₊₊₊₊
−
na
(En cours)
0
0
0
0
0
Fort
Moyen
Moyen
Moyen
0
Moyen
Moyen
Moyen
Moyen
0
₊
₊
₊
₊
Faible
Faible
Moyen
Faible
Faible
Faible
Faible
Faible
(En projet) (En projet) (En projet) (En projet)
(En projet) (En projet) (En projet) (En projet)
0
0
0
0
0
₊₊₊
₊₊₊
₊₊₊
₊₊₊
Faible
Faible
Fort
Faible
Faible
Faible (1)
Moyen
Moyen
(En projet) (En projet) (En projet) (En projet)
(En projet) (En projet) (En projet) (En projet)
0
0
0
0
0
0
0
0
₊
Faible
Forte
Moyenne
Fort
Faible
Moyenne
Forte
Faible
(En projet) (En projet) (En projet) (En projet)
0
0
0
0
0
₊₊
₊₊
₊₊₊
Faible
Moyenne
Forte
Forte
Faible
Moyenne
Forte
Faible
(En projet) (En projet) (En projet) (En projet)
0
0
0
0
Fort
Faible
Faible
Fort
Moyen
Moyen
Fort
Moyen
Moyen
Moyen
Faible
Moyen
0
0
0
Moyen
Moyen
Moyen
Moyen
Fort
Fort
Les Houches, 3rd of February 2014
Moyen
Fort
Fort
Moyen
Moyen
Fort
33
0
0
0
 Case 1: the four trajectories in the deliberative
framework of the National Debate on Energy
Transition (DNTE)
 Case 2: transition scenarios and technologies
in the National Alliance for Energy Research
(ANCRE) exercise
 Deep Decarbonisation Pathways: a research
agenda
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
34
The DDPP - Deep Decarbonisation
Pathway Project UN-SDSN (Jeff. Sachs)
 31 leading research institutions from 12 countries (Australia, Brazil,
China, European Union, India, Indonesia, Japan, Mexico, Russia,
South Africa, South Korea, the United States of America), covering
more than 70% of global C02 emissions. The project aims to:
1. Prepare transparent national deep decarbonization pathways to 2050 to
help countries adopt and implement policies to achieve deep
decarbonization.
2. Support a positive outcome of the UNFCCC international climate
negotiations by 2015 by helping national decision makers and the
international community to understand what deep decarbonization implies
for individual countries and regions.
3. Review aggregate global emission reduction pathways prepared for AR5
by the WG III in light of the national decarbonization pathways.
4. Build an on-going global network to facilitate learning and promote
problem solving in the implementation phase of national of deep
decarbonization strategies after 2015
P. Criqui – LEPII-EDDEN – Economie de l’Energie et de l’Environnement – 2010-2011
35
1. The wedges (Jim Williams, Science 2012 and DDPP)
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
36
2. Robustness (Jim Williams, Science 2012 and DDPP)
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
37
3. Static economic effciency:
equalising the Marginal Abatement Costs
Option, Sector ou Country 1
OSC 2
OSC 3
TOTAL
Cost
€/tCO2
Quantity (tCO2)
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
38
4. Dynamic efficiency: accounting for learning effects
Wind on shore learning curve
Wind off shore learning curve
10000
10000
Wind - ON
Wind - OFF
LR = 3 %
Titre de l'axe
Titre de l'axe
LR = 6 %
1000
LR = 11 %
1000
LR = 20 %
Floor Cost
100
100
1
10
100
1000
10000
100000
1000000
10000000
100000000
1
10
100
1000
Titre de l'axe
10000
100000
1000000
10000000
Titre de l'axe
PVlearning curve
CSP learning curve
100000
10000
LR = 0%
Solar - PV
LR = 7 %
Solar - CP
Titre de l'axe
Titre de l'axe
10000
LR = 19 %
1000
1000
LR = 28 %
100
100
1
10
100
1000
10000
100000
Titre de l'axe
P. Criqui – CNRS PACTE-EDDEN
1000000
10000000
100000000
1
10
100
1000
10000
100000
1000000
Titre de l'axe
Les Houches, 3rd of February 2014
39
10000000
5. An integrated energy, macroeconomic
and industrial strategy (Pantelis Capros, AMPERE 2014)
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
40
6. Assessing the environmental impacts:
the EU ExternE-NEEDS approach
?
3.
1.
2.
P. Criqui – CNRS PACTE-EDDEN
4.
Les Houches, 3rd of February 2014
41
Deep Decarbonisation: a research agenda
 Identify the wedges for cost-effective decarbonisation of energy
systems (with consideration of the robustness of the system):
1.
Energy sobriety/efficiency
2.
Decarbonisation of electric and non-electric energy carriers
3.
Development of low carbon carriers (electricity) for transport uses
 Identify the pillars of a consistent macro-economic strategy:
1.
A macro-economic framework: investment substituting to recurrent
fossil consumption generates new activities and employment, under
the constraint of economic competitiveness
2.
An industrial strategy combining: innovation, demand-pull, market
consolidation (EU scale) and “first-mover advantage”
 Develop the methodologies for the assessment of the
environmental impacts of the different scenarios (accidents and
health hazards, air quality, land, water, biodiversity...)
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
42
Annex on DDPP dashboard and
technology dynamics
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
43
A dashboard for national studies
1. The minimum
requirements are
to have a compact
energy balance (IEAtype)…
2. plus a minidashboard on energy
demand drivers…
3. plus a dedicated
dashboard on lowcarb technology
deployment
(wedges)
P. Criqui – CNRS PACTE-EDDEN
Sectoral Kaya
Activity
Energy
Emissions
AI x
EI x
CI
Housing
m2/hab
kWh/m2
CO2/kWh
Tertiary
SVA/GDP
m2/SVA
kWh/m2
CO2/kWh
Personal Transp.
pkm/hab
pkm/vkm
l/vkm
kWh/evkm
CO2/l
CO2/kWh
Good Transp.
tkm/GDP
l/tkm
kWh/etkm
CO2/l
CO2/kWh
Steel Industry
tos/GDP
toe/tos
CO2/toe
Cement Industry
toc/GDP
toe/toc
CO2/toe
Other Industry
OIVA/GDP
toe/OIVA
CO2/toe
Electricity Sector
TWh/GDP
CO2/kWh
toe/GDP
CO2/toe
CO2 Emissions =
9 Sectors:
Other Transf.
Les Houches, 3rd of February 2014
44
TECHPOL: Nuclear, Coal and Gas
Source: P. Menanteau, P. Criqui laboratoire EDDEN (CNRS-UPMF)
BdD TECHPOL laboratoire EDDEN
2010
2025
2050
2010
Uranium $/MWhe
Fuel price
7,0
TECHPOL db
8,0
10,0
2010
2025
2050
2010
Gaz $/Mbtu
115,0
120,0
10,0
14,0
18,0
10
50
200
10
50
200
Pulverized Coal + CCS* *
900 MWe
2012
2025
2050
Biomass (€/MWh)
110,0
Supercritical Pulverized Coal 900
MWe
Nuclear* 1650 MWe
Euros 2010
2050
Charbon $/t
Carbon price €/tCO2
Power Technologies
2025
20,0
25,0
Discount
rate
6,0%
Interest rate
6,0%
30,0
Gas Turbine in CC 600 MWe
Gas Turbine CC + CCS**
600 MWe
2012
2025
2050
2012
2025
2050
2025
2050
2012
2025
2050
2025
2050
Overn. Inv. Cost
€/kW
2000
4000
3500
1600
1500
1500
2600
2210
750
650
650
2012
1200
1020
Technical lifetime
Years
40
40
40
40
40
40
40
40
25
25
25
25
25
Construction time
Years
8
8
8
3
3
3
4
4
2,5
2,5
2,5
3
3
Fixed O&M cost
€/kWy
70
70
70
30
30
30
60
60
20
20
20
40
40
Variable O&M cost
€/MWh
5,0
5,0
5,0
2,0
2,0
2,0
4,0
4,0
2,0
2,0
2,0
4,0
4,0
Load Factor
%
75%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
80%
Electrical efficiency
%
33%
33%
33%
45%
46%
46%
33%
35%
58%
59%
60%
48%
52%
Decommission share****
%
0%
25%
25%
10%
10%
10%
10%
10%
5%
5%
5%
5%
5%
Discount rate (%)
%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
Interest rate
%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
€/kW
2577
5270
4611
1812
1699
1699
3029
2574
839
727
727
1362
1158
19
Global efficiency
Total investment Cost
Fixed cost
€/MWh
37
60
54
21
20
20
37
33
12
11
11
21
Fixed cost
€/kWy
171
350
306
120
113
113
201
171
66
57
57
107
91
Fuel price
€/toe
19,2
22,3
27,9
112,2
117,3
122,4
117,3
122,4
285,7
400,0
514,3
400,0
514,3
Carbon content
tCO2/toe
4,0
4,0
4,0
4,0
4,0
2,2
2,2
2,2
2,2
2,2
Carbon price
€/tCO2
10
50
200
50
200
10
50
200
50
200
CO² emissions
tCO2/MWh
0,76
0,74
0,74
0,10
0,10
0,33
0,33
0,32
0,04
0,04
Fuel cost incl. Carbon
€/MWh
5,0
5,8
7,3
29,0
59,0
171,0
35,7
49,5
45,7
74,6
137,8
73,7
92,5
Variable cost
€/MWh
10,0
10,8
12,3
31,0
61,0
173,0
39,7
53,5
47,7
76,6
139,9
77,7
96,5
Production cost
€/MWh
47
71
66
52
81
193
77
87
60
88
151
99
115
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
45
TECHPOL: Wind, Solar and Biomass
Source: P. Menanteau, P. Criqui laboratoire EDDEN (CNRS-UPMF)
BdD TECHPOL laboratoire EDDEN
2010
2025
2050
2010
Uranium $/MWhe
Fuel price
7,0
8,0
TECHPOL db
10,0
Wind Onshore 50 Mwe
Euros 2010
2050
2010
Charbon $/t
Carbon price €/tCO2
Power Technologies
2025
2025
2050
2010
Gaz $/Mbtu
2050
Biomass (€/MWh)
110,0
115,0
120,0
10,0
14,0
18,0
10
50
200
10
50
200
Wind Offshore 250 Mwe
2025
20,0
Solar PV*** (large systems)
25,0
Discount
rate
6,0%
Interest rate
6,0%
30,0
Biomass
Steam turbine
Marine turbines
2012
2025
2050
2012
2025
2050
2012
2025
2050
2025
2050
2012
2025
2050
Overn. Inv. Cost
€/kW
1300
1100
1000
3500
3000
2500
2100
1400
800
2012
5000
3000
2500
2500
2500
Technical lifetime
Years
20
20
20
15
20
20
25
30
30
20
20
20
20
20
Construction time
Years
1
1
1
2
2
2
1
1
1
1
1
2,5
2,5
2,5
Fixed O&M cost
€/kWy
40
35
32
100
90
90
25
20
20
100
100
100
100
100
Variable O&M cost
€/MWh
4,0
4,0
4,0
Load Factor
%
24%
26%
26%
38%
40%
40%
13%
14%
14%
40%
40%
80%
80%
80%
Electrical efficiency
%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
100%
30%
32%
35%
Decommission share****
%
5%
5%
5%
10%
10%
10%
10%
10%
10%
Discount rate (%)
%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
Interest rate
%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
6%
€/kW
1399
1184
1076
3973
3371
2809
2276
1509
862
5300
3180
2766
2766
2766
Global efficiency
Total investment Cost
Fixed cost
€/MWh
77
61
55
153
110
96
178
106
67
160
108
49
49
49
Fixed cost
€/kWy
122
103
94
409
294
245
178
110
63
462
277
241
241
241
€/toe
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
0,0
Fuel price
232,6
290,7
348,8
tCO2/toe
0,0
0,0
0,0
Carbon price
€/tCO2
0
0
0
CO² emissions
tCO2/MWh
0,00
0,00
0,00
Fuel cost incl. Carbon
€/MWh
66,7
78,1
85,7
Variable cost
€/MWh
70,7
82,1
89,7
Production cost
€/MWh
119
131
138
Carbon content
77
61
55
P. Criqui – CNRS PACTE-EDDEN
153
110
96
178
106
67
160
Les Houches, 3rd of February 2014
108
46
LCoE comparisons with TECHPOL
Production Costs TECHPOLdb
(€/MWh, CO2 50 €/t in 2025, 200 €/t in 2050)
250
NUC
COAL +CCS GAS +CCS WON WOFF SPV
MAR BIOM +COGEN
200
150
Carbon tax
Energy
O&M
Capital
100
50
0
2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050 2012 2025 2050
Nuclear
Coal
Coal + CCS
Gas
P. Criqui – CNRS PACTE-EDDEN
Gas + CCS
Wind on shore
Wind off shore
PV
Marine turbines
Biomass
Les Houches, 3rd of February 2014
Biomass (CHP)
47
Beyond LCoE: system costs
 The development of electricity systems based on
Variable Renewable Electricity imposes the
taking into account of new cost categories,
beyond the LCOE
 The system costs with VRE include (B3S):
1. Adequacy costs for changes in the production
capacities, Backup & Storage
2. Balancing costs for load following (ramping,
Demand Response and Smartgrids)
3. Network costs for VRE connection, two-way
transport, interconnections and Supergrids
P. Criqui – CNRS PACTE-EDDEN
Les Houches, 3rd of February 2014
48

similar documents