Unit1Lesson3-7Jeopardy

```Math Jeopardy
Solving
Polynomials
Multiply
Divide
Factoring
Polynomials
100
100
100
100
100
200
200
200
200
200
300
300
300
300
300
400
400
400
400
400
500
500
500
500
500
Solving Polynomials for 100
Solve the equation.
 x  3( x  10)  0
2
Hint for Solving Polynomials for
100
Set each individual factor equal to 0
and solve.
 x  3  0
( x 2  10)  0
100
x3
x   10
Solving Polynomials for 200
Solve the polynomial.
x  2x  x  0
4
3
2
Hint for Solving Polynomials for
200
Factor out a common monomial
(What is common in each term).
Then finish factoring from there.
x 4  2x 3  x 2  0
200
X=0,1
Solving Polynomials for 300
Solve by factoring.
3x  21x  30x
3
2
Hint for Solving Polynomials for
300
3x  21x  30x
3
2
Factor out a common monomial
(What is common in each term).
Then finish factoring from there
300
X=0, -5, and -2
Daily Double
You need to decide how much
you are willing to bet, if you get
the right answer you will get
double what you bet.
Solving Polynomials for 400
Solve by grouping.
x  x  4x  4  0
3
2
400
X= -2, 2, -1
Solving Polynomials for 500
Solve.
x  10x  5x  50
3
2
500
x  10
x 5
Multiplying Polynomials for 100
Multiply.
3xy( x  x y  4 y )
4
2
3
Hint for Multiplying Polynomials
for 100
3xy( x 4  x 2 y  4 y 3 )
Use the distributive property.
Polynomials
100
3x y  3x y  12xy
5
3 2
4
Multiplying Polynomials for 200
Multiply
(x-10)(x+6)
Polynomials 200
x  4 x  60
2
Multiplying Polynomials for 300
Multiply:
( x  6)( x  3x  6)
2
Polynomials 300
x  9 x  24x  36
3
2
Multiplying Polynomials for 400
Write in standard form and identify
4 x 2  2 x  5x3  10 x4
Hint for Multiplying Polynomials
400
Standard form is largest degree to smallest degree.
The degree is the largest exponent.
The leading coefficient is the number in front of the
x with the largest degree.
Polynomials
400
The leading coefficient is -10 and the
degree is 4.
10 x 4  5x3  4 x 2  2 x
Multiplying Polynomials for 500
Expand.
( x  4)
4
Hint for Multiplying Polynomials
500
Use Pascal’s Triangle
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
Row 0
Row 1
Row 2
Row 3
Row 4
Row 5
Polynomials 500
x  16x  96x  256x  1024
4
3
2
Dividing Polynomials for 100
Is (x-2) a factor of
x  x  12x  12 ?
3
2
Hint for Dividing Polynomials 100
Use synthetic division.
Is the remainder zero?
100
Yes, it is a factor
Dividing Polynomials for 200
Use synthetic division.
( x  2 x  12x  24)  ( x  2)
3
2
Hint for Dividing Polynomials
200
Set up the synthetic division problem
like this:
-2 1
2
12
24
200
x  12
2
Dividing Polynomials for 300
Use long division.
(3x  29x  10)  (3x  1)
2
300
x 10
Dividing Polynomials for 400
Divide using any method.
(3x  x  10)  ( x  5)
4
2
400
115
3x  15x  5x  25 
x 5
3
2
Dividing Polynomials for 500
Divide using long division.
(4 x  14x  2 x  10)  (2 x  1)
4
3
500
11
2 x  8x  4 x  1 
2x 1
3
2
Factoring Polynomials for 100
Factor:
x  10x  16
4
2
Hint for Factoring Polynomials
for 100
x 4  10x 2  16
Factors of 16 that add up to 10
16
100
( x  8)( x  2)
2
2
Factoring Polynomials for 200
Factor:
x  16
4
200
( x  4)( x  4)
2
2
If you got to here you are partly right!
2
( x  4)( x  2)( x  2)
Factoring Polynomials for 300
Factor:
2 x  162x
3
Hint for Factoring Polynomials
for 300
2 x  162x
3
Factor out what’s common in both terms.
Then use difference of squares.
300
2 x( x  9)( x  9)
Factoring Polynomials for 400
Factor.
x  4 x  10x  40
3
2
400
( x  10)( x  4)
2
Factoring Polynomials for 500
Factor.
8t 3  27
Hint for Factoring Polynomials
for 500
Difference or sum
of cubes
8t 3  27
(u 3  v 3 )  (u  v)(u 2  uv  v 2 )
(u 3  v 3 )  (u  v)(u 2  uv  v 2 )
500
(2t  3)(4t  6t  9)
2
Polynomials for 100
Write the polynomial in standard form.
coefficient.
4 x  6 x 3  4  10x 2
6 x  10x  4 x  4
3
2
Degree 3.
Polynomials for 200
( x  4 x  6)  (3x  4 x)
2
2
4x  6
2
Polynomials for 300
Simplify the following:
( x  2x  5)  (5x  3x  10)
3
2
3
4 x  2 x  5x  5
3
2
Polynomials for 400
Simplify.
(4 x  2 x  3x)  (4x  2 x  10)
3
2
2
 4 x  2 x  5 x  10
3
2
Polynomials for 500
Multiply.
( x  10)( x  4 x  6)
2