TES - INRiM

Report
Mauro Rajteri
Divisione OTTICA
Mauro Rajteri, 12/06/2013 Panoramica INRIM
Photon: also called Light Quantum, minute energy packet of
electromagnetic radiation. The concept originated (1905) in
Einstein’s explanation of the photoelectric effect (enc. Brittanica)
Photon counting:
average count rate  intensity of the light beam
but
actual count rate fluctuates from measurement to measurement.
Mauro Rajteri, 12/06/2013 Panoramica INRIM
2/46
Coherent light & constant intensity:
3.1
Mauro Rajteri, 12/06/2013 Panoramica INRIM
3/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
4/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
5/46
"Classical" Single photon
detector

Photon source
Photon number resolving (PNR)
detector
Mauro Rajteri, 12/06/2013 Panoramica INRIM
6/46
TES: a superconducting film operated in the temperature
region between the normal and the superconducting state
DTc ~ 1 mK  high sensitive thermometer
t (s)
Ibias
R
Ites
Workig Point
I
Tc ~ 100 mK
T
Rbias<< Rtes
DT DR @ Voltage bias  DI
Mauro Rajteri, 12/06/2013 Panoramica INRIM
7/46
TES: a superconducting film operated in the temperature
region between the normal and the superconducting state
DTc ~ 1 mK  high sensitive thermometer
t (s)
Ibias
R
1 ph
Ites
Workig Point
I
Tc ~ 100 mK
T
Rbias<< Rtes
DT DR @ Voltage bias  DI
Mauro Rajteri, 12/06/2013 Panoramica INRIM
8/46
TES: a superconducting film operated in the temperature
region between the normal and the superconducting state
DTc ~ 1 mK  high sensitive thermometer
2 phs
t (s)
Ibias
R
Ites
Working Point
I
Tc ~ 100 mK
T
Rbias<< Rtes
DT DR @ Voltage bias  DI
Mauro Rajteri, 12/06/2013 Panoramica INRIM
9/46
Bilayer – proximity effect Ti=24 nm, Au=54 nm


Tc =121 mK
∆Tc = 2 mK
Rn = 0.220 Ω
10 µm X10 µm
20 µm X 20 µm
Mauro Rajteri, 12/06/2013 Panoramica INRIM
10/46
Pinc
Pe
g= thermal conductance
Te
Superconductor - e
ge-ph
Ps
Superconductor - ph
Tph
K = constant: material and geometry
dependent
Tsub
n = constant: depends on the dominant
thermal coupling mechanism
gph-sub
Substrate
gsub-b
Thermal bath
n
Ps  K (T n  Tsub
)
Tb
For T < 1K  electron-phonon decoupling  n  5
Mauro Rajteri, 12/06/2013 Panoramica INRIM
11/46
DE FWHM  2.355 4k BTc Esat
E sat 
n
2
CTc

Intrinsic Energy Resolution
∆EFWHM is proportional to the operating temperature Tc
n

   Ts
 etf   th 1  1  n
n  Tc







1
Effective TES response time
etf is lower than th if /n >1
Mauro Rajteri, 12/06/2013 Panoramica INRIM
12/46
25 m
0
2w ~19÷
2
w
2w
z ~ 125
m
Gaussian beam:
w0=4.7/5.6 m @
l=1.3/1.55 m
(TES 20 x 20 m)
1,5 mm
1,5 mm
0,25
1mm
0,5 mm
5 mm
0,5 mm
0.8 mm
0,25
0,5 mm
back off
Silicon V-groove
with fiber array
acc ~ 58% @1.55m ÷ 80% @1.3m
Cu bracket
3 mm
Silicon
Mauro Rajteri, 12/06/2013 Panoramica INRIM
13/46
Optical coupling fiber-TES
Reflection and transmission of superconducting film
 Antireflection coating or optical cavity
2 layers
Substrate
a-Si3N4:Hy (low reflection index)
a-SiH (high reflection index)
R(1550)=0.018%
Mauro Rajteri, 12/06/2013 Panoramica INRIM
14/46
Laser
DITES
Electronics
& data
aquisition
Optical
fiber
Attenuator
INRIM: TES
module
Mauro Rajteri, 12/06/2013 Panoramica INRIM
SQUID current
sensors (PTB)
15/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
16/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
17/46
Noisy: ΔE = 0.46 eV
2000
1
histogram noisy
fit
1800
1600
(a)
occurrences
1400
1200
Wiener filter:
2x improvement on DE
2
1000
800
600
Wiener: ΔE = 0.22 eV
3
400
4
200
0
0
10
20
30
40
amplitude [mV]
3000
histogram Wiener
fit
5
50
2500
60
(b)
occurrences
2000
D. Alberto, et al, Optical Transition-Edge Sensors
Single Photon Pulse Analysis, IEEE Trans. Appl.
Supercond., 21 , 285 – 288 (2011)
1500
1000
500
0
0
10
20
Mauro Rajteri, 12/06/2013 Panoramica INRIM
30
40
amplitude [mV]
50
60
18/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
19/46
phs
20X20 μm2
l=1570 nm
L. Lolli, et al. J. Low Temp. Phys., vol. 167, pp. 803-808, 2012.
Mauro Rajteri, 12/06/2013 Panoramica INRIM
20/46
Detector to be Calibrated
w
s
N2 = 2 N
N1 = 1 N
Klyshko
1 =NC/ N2
COUNTER
N1
NC
w
COINC
COUNTER
N
p
PARAMETRIC
CRYSTAL
w
i
NC= 1 2 N
Absolute
Quantum
Efficiency
N2
COUNTER
“Herald” Detector
Drawback: Klyshko's technique is not able to exploit the PNR ability of the
detector
Proposal and demonstration of an absolute technique for measuring
quantum efficiency, based on an heralded single photon source, but
exploiting the PNR ability of the detector
A. Avella et al OPTICS EXPRESS 2011 19 p. 23249-23257
Mauro Rajteri, 12/06/2013 Panoramica INRIM
21/46
PH (i )
PA (i )
Probability of observing i photons per heralding count
in the presence of the heralded photon
Probability of observing i photons per heralding count
in the absence of the heralded photon
(i.e. of observing i “accidental” counts)
The probability of observing 0 photons per heralding count :
PH (0)   (1   ) PA (0)  (1   ) PA (0)
Non detection & No accidental
  
False her.& No accidental
“Total” Quantum Efficiency of the PNR detector optical
and coupling losses 
 detector proper Quantum Efficiency 

Probability of having a True Heralding Count
(not due to stray-light or dark counts)
Mauro Rajteri, 12/06/2013 Panoramica INRIM
22/46
The probability of observing i photons per heralding count
PH (i)   [(1   ) PA (i)   PA (i 1)]  (1   ) PA (i)
From each PH (i ) a value of “Total” Quantum Efficiency
can be estimated  Consistency Test
From the probability of 0
From the probability of i
PA (0)  PH (0)
0 
 PA (0)
PH (i )  PA (i )
i 
 [ PA (i  1)  PA (i)]
Mauro Rajteri, 12/06/2013 Panoramica INRIM
23/46
IF1
PDC single photon source
Pump source
HWP NLC
TES detection
system
IF2
b
a
Mauro Rajteri, 12/06/2013 Panoramica INRIM
24/46
PUMP
total
quantum
efficiency
DET1
6 Repeated
measurements
each 5 hr. long
>5 106 counts
Heralded
Accidental
@ 807 nm
prob. of true
heralding counts
Mauro Rajteri, 12/06/2013 Panoramica INRIM
25/46
POVM
provides the description of the measurement process
“n”
Prob. of output “n”
Mauro Rajteri, 12/06/2013 Panoramica INRIM
26/46
POVM
provides the description of the measurement process
“n”
Prob. of output “n”
Mauro Rajteri, 12/06/2013 Panoramica INRIM
27/46
POVM
provides the description of the measurement process
“n”
Prob. of output “n”
: Prob. of having output “n” with m photons as input
Mauro Rajteri, 12/06/2013 Panoramica INRIM
28/46
Simplest Solution:
Fock state source
Mauro Rajteri, 12/06/2013 Panoramica INRIM
29/46
Simplest Solution:
Fock state source
Mauro Rajteri, 12/06/2013 Panoramica INRIM
30/46
Simplest Solution:
Fock state source
Affordable Solution: Coherent source
[Lundeen et al., Nat. Phys 5, 27 (2009)]
Mauro Rajteri, 12/06/2013 Panoramica INRIM
31/46
Coherent source
Pulsed laser source
Experiment with a TES
1570 nm
Mauro Rajteri, 12/06/2013 Panoramica INRIM
32/46
Coherent source
Pulsed laser source
Experiment with a TES
Mauro Rajteri, 12/06/2013 Panoramica INRIM
33/46
Coherent source
Pulsed laser source
Experiment with a TES
Mauro Rajteri, 12/06/2013 Panoramica INRIM
34/46
Coherent source
Linear detection model
  =5.1%
G. Brida
etRajteri,
al New
Journal of
Physics 14
(2012) 085001
Mauro
12/06/2013
Panoramica
INRIM
35/46
Joint Projects for the exchange of researchers
within the Executive Programme Italy-Japan 2010-2012
Alignment:
ADR cold finger
Mauro Rajteri, 12/06/2013 Panoramica INRIM
36/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
37/46
TiAu TES Tc=301 mK
73 phs
l=1535 nm
QE  50 %
@ 500 kHz means
3.65x106 photons/s (473 fW)
Mauro Rajteri, 12/06/2013 Panoramica INRIM
38/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
39/46
Rn=0.45 
R(T , I ) 
Rn
2

 T  Tc   I 
1

tanh



D



2
n
n

 CeT  IR (T , I )  k (T  Ts )
 

LI  I bias Rs  I R p  Rs  R(T , I )

45nm Au+45nm Ti
10 m x 10 m
Tc=106 mK
Ce=0.35fJ/K

G  nkTcn1  44pW/K
  23
Mauro Rajteri, 12/06/2013 Panoramica INRIM
40/46
eff = 3.8 s
DE = (0.113 ± 0.001) eV
DE  2 2 ln 2
 1 E
x2  x1
(Submitted to APL)
Mauro Rajteri, 12/06/2013 Panoramica INRIM
41/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
42/46
TES  Photon number resolving detectors 
 Wavelength range: UV-IR 
 Quantum efficiency:50%90% 
 Dark counts: background limited 
 Count rate:  1 MHz 
 Working temperature: < 1K 
Mauro Rajteri, 12/06/2013 Panoramica INRIM
43/46
Fabbricazione: C. Portesi, E. Monticone
Sviluppo 
Caratterizzazione : E. Taralli, L.Lolli , E. Monticone, M. Rajteri
(criogenica, elettrica e ottica)
E. Taralli, L. Callegaro (impedenza)
Taratura

Applicazioni
Ottica quantistica: A. Avella,G. Brida, L. Ciavarella, I.
Degiovanni, M. Genovese, M. Gramegna, M.G. Mingolla,F.
Piacentini, M.L. Rastello, P. Traina
Collaborazioni 
J. Beyer, D. Fukuda, T. Numata, M.G.A. Paris, M. White,
G. Cantatore, G. Ventura
Mauro Rajteri, 12/06/2013 Panoramica INRIM
44/46
2001-2004
-Fotorivelatori superconduttivi ad elettroni caldi per il VIS-IR
-Realizzazione di STJ come rivelatori in regime di conteggio di fotoni per
applicazioni astrofisiche
E45 (2006-2010)
Rivelatori superconduttivi a transizione
di fase per conteggio di singoli fotoni
Quantum Candela (2008-2011)
Progetto premiale P5 (2012-2013)
Oltre I limiti classici della misura
NEW08 MetNEMS (2012-2015)
Metrology with/for NEMS
Mauro Rajteri, 12/06/2013 Panoramica INRIM
45/46
Mauro Rajteri, 12/06/2013 Panoramica INRIM
46/46

similar documents