Diarylethenes as Functional Organic Dyes

Report
Geneviève Bétournay
Seminar – March 1st 2012
1

General introduction to functional dyes

Introduction to photochromic dyes

Specific Applications

Diarylethenes and their properties

Diarylethene syntheses

Conclusion
2

Colorants absorb or emit light
in the visible range (400-700 nm)
 Dyes and pigments
 Organic and inorganic
 Natural and synthetic

Traditional applications
 Textiles, paints and plastics
 Food
 Cosmetics and hair dyes
R
N
R2 N
S
O
O
O
H 2O
N
Cr
N
N Ar
O
O
R
O
O
OH
OH
O
Alizarin
Magenta
Polaroid SX-70 system
R1
N
H 2N
N
NH
R2
Mauveine
1856
rd
Zollinger, H. Color Chemistry, 3 ed; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.
Sir William Henry Perkin
3

Biomedical and biochemical
 Tagging, Imaging

Military uses
 IR Camouflage

Security
 Security printing




Dye Lasers
Cameras
Ink-jet printers
Colour display devices
 OLEDs


Dye Sensitized Solar Cells (DSSC)
Ophthalmic lenses
4

Molecule that reversibly changes between two or more states in
response to an external stimulus (Temperature, light, electrical
current, pH, etc...)
 Optical switch when the stimulus is light
1
 Molecular computers, supramolecular
chemistry, telecommunications

Device for recording and storing digital information (binary),
written and read by a laser
 CDs, DVDs, Blu-ray
Photochromic dyes
5
UV
Vis.
H. Dürr, H. Bouas-Laurent Pure Appl. Chem. 2001, 73, 639.
6
R
N N
hv 1
N N
hv 2 or 

E-Z isomerization

Intramolecular hydrogen transfer

Intramolecular group transfer

Dissociation processes

Electron transfer
R
R
R
hv 1
N
N
H

OH
O
O
O
hv 1
hv 2 or 
O
O
O
O
O
O
hv
R 2N
NR 2

R 2N
NR 2
CN
CN
M, hv
R N
N R
M+, 
R N
H. Dürr, H. Bouas-Laurent Pure Appl. Chem. 2001, 73, 639.
NHR
7

Pericyclic reactions – usually electrocyclizations
R
hv 1
X
X
hv2 or 
N O
R
 Spiropyrans (X = C) and
N
O
Spirooxazines (X = N)
hv 1
O
 Chromenes
hv 2 or 
O
O
O
hv 1
O
X
X
hv 2
O
O
O
Fulgimides (X = N)
F F
F F
F
F
 Fulgides (X = O) and
F
F
hv 1
F
F
F
F
S
S
 Diarylethenes
hv 2
S
S
H. Dürr, H. Bouas-Laurent Pure Appl. Chem. 2001, 73, 639.
8

1867 Fritzsche - photochromism of tetracene

40s – 60s Mechanistic and synthetic studies, especially by Hirschberg
and Fischer
 1950 Hirschberg suggests the term “photochromism”
 1952 Discover photochromism of spiropyrans
 1956 Hirschberg compares photochromic systems to information stored
and removed from a memory

Expansion in late 60s, revival in 80s
H. Dürr, H. Bouas-Laurent Pure Appl. Chem. 2001, 73, 639.
Zollinger, H. Color Chemistry, 3rd ed; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.
Hirschberg, Y. J. Am. Chem. Soc. 1956, 78, 2304.
9

1989 from Transitions Optical, Inc.

Biggest consumer of photochromic dyes

Cocktail of carefully matched compounds
R
hv 1
N

These are T-type compounds
(Thermally reversible)
N O
R
hv 2 or 
N
N
O
 Compounds will slowly
revert back to the colourless form
hv 1
O
hv 2 or 
O
Corns, S. N., Partington, S. M. Towns, A. D. 2009, Color. Tech., 2009, 125, 249.
Zollinger, H. Color Chemistry, 3rd ed; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.
10
11

Photo-optical switching:
information
 Change in the refractive index
switch
UV
Vis.
 Switching the route of optical fiber networks
F F
F
F

Photoelectrochemical switching:
N
 Change in electrochemical properties
S
S
UV
 Modulation in molecular electronic devices
N
Vis.
F F
F
F
N
Irie, M. Chem. Rev. 2000, 100, 1685.
F
F
S
F
F
S
N
12

Greater data density storage
2 mm3
CD: 700 MB

Faster transfer rate
Toriumi, A., Herrmann, J. M., Kawata, S. Opt. Lett. 1997, 22, 555.
13

Thermal stability of both isomers

Low fatigue

Reaction induction at desired wavelengths

Rapid response and high sensitivity

Non destructive readout capability (Memories)
H. Dürr, H. Bouas-Laurent Pure Appl. Chem. 2001, 73, 639.
Zollinger, H. Color Chemistry, 3rd ed; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.
14
15

Thermal stability is very important for optoelectronic applications

T-type (thermally reversible) photochromic compounds can’t be
used...
information
switch
Δ
Δ
16

Reverse reaction only happens with light, thermally irreversible
R1
R
R2
R3
O
R
X
R4
Ar
Ar
O
Fulgides (X = O)
Fulgimides (X = N)
Diarylethenes

1981 – Heller et al. report P-type fulgides

Diarylethenes are the most promising candidates for
optoelectronic applications
Zollinger, H. Color Chemistry, 3rd ed; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.
17
Long lifetime
without light and O2
UV
X
X
Masahiro Irie
O2
vis.
X
X = O, S
X
X
X
X = O, S
Thermally unstable
Reverts back quickly in the dark
O2
UV
vis. or 
UV
O2
vis
X
X
X = O, S
X
X
X
X
X = O, S
Kellogg, R. M., Green, M. B., Wynberg, H. J. Org. Chem. 1967, 32, 3093.
Muszkat, K. A., Fischer, E. J. Chem. Soc. B, 1967, 662.
Irie, M., Mohri, M. J. Org. Chem. 1988, 53, 803.
18
T-type
P-type
Aryl Group
Relative Ground State
Energy Difference
(conrotatory, kcal/mol)
Aromatic Stabilization
Energy (kcal/mol)
Half-life of
closed-ring isomer*
in the dark (temp.)
Phenyl
27.3
27.7
1.5 min (20 °C)
Pyrrolyl
15.5
13.8
32 min (20 °C)
Furyl
9.2
9.1
>12 h (80 °C)
Thienyl
-3.3
4.7
>12 h (80 °C)
* Derivatives
Nakamura, S., Irie, M. J. Org. Chem. 1988, 53, 6136
Patel, P. D., Masunov, A. E. J. Phys. Chem. C 2011, 115, 10292.
19
R
R
R
R
R
R
R
R
R
N
N
R
S
S
X
S
X
X
X
S
S
X
X = O or S
R
N
R
N
N
Irie, M. Proc. Jpn Acad. Ser. B 2010, 86, 472.
Irie, M. Chem. Rev. 2000, 100, 1685.
R
R
S
S
N
OHC
R
R
S
S
CHO
R
R
S
iPr
S
iPr
20
21

Undesireable side reactions limit the number of cycles
S
R
R
hv
R
X
S
NC
NC
CN
O2
R
UV
S
S
S
S
S
O
F F
F
F
hv
Ph
S
F
F
S
S O
S
F F
S
CN
S
F
F
F
F
UV
Ph
Ph
S
S
Ph
S
Hanazawa, M., Sumiya, R., Horikawa, Y., Irie, M. J. Chem. Soc. Chem. Comm. 1992, 206.
Irie, M., Lifka, T., Uchida, K., Kobatake, S., Shindo, Y. Chem. Comm. 1999, 747.
Taniguchi, H., Shinpo, A., Okazaki, T., Matsui, F., Irie, M. Nippon Kagaku Kaishi 1992, 1138.
22
F F
F F
F
F
F
F
S
F F
F
F
UV
S
F
F
S
Ring-closed
isomer
O
O
F
F
S
F
F
S
S
F F
F
F
F
F
S
F
F
S
Repeatable Cycles Number* (in Benzene)
In Air
Under Vacuum
O
70
S
F F
F
F
S
S
F F
F
F
F
F
480
S
S
O
O
3700
S
S
O
10 000
S
* The number of photochromic cycles at which the absorbance of the
closed-ring isomer is 80% of its value in the first cycle.
Irie, M., Lifka, T., Uchida, K., Kobatake, S., Shindo, Y. Chem. Comm. 1999, 747.
Irie, M. Pure & Appl. Chem. 1996, 1367.
Higashiguchi, K., Matsudo, K., Kobatake, S., Yamada, T., Kawai, T., Irie, M. Bull. Chem. Soc. Jpn 2000, 2389.
23
24


Specific applications require specific wavelengths
Depends on light source that will be used
 Near-Field Optical Memory: conventional laser lights
▪ Writing with 488 nm light (Ar ion laser)
▪ Erasing with 633 nm light (He-Ne laser)

Change the compound’s structure in order to change its
maximum absorbance (λmax)
25

Dependant on upper cycloalkene unit

EWG increase λmax
 Perfluorocyclopentene derivatives have λmax in the UV region
 Maleic anhydride and maleimide derivatives have λmax > 400 nm
F F
F
F
F
F
S
S
258 nm
O
O
S
O
S
417 nm
Bn
N
O
S
O
S
406 nm
Hanazawa, M., Ritsuo, S., Horiikawa, Y., Irie, M. J. Chem. Soc. Chem. Commun. 1992, 206 (Perfluorocyclopentene)
Uchida, K., Nakayama, Y., Irie, M. Bull. Chem. Soc. Jpn 1990, 63, 1311. (Maleic anhydride)
El Yahyaoui, A., Félix, G., Heynderickx, A., Moustrou, C., Samat, A. Tetrahedron 2007, 63, 9482. (Maleimide)
26

Extent of π-electron delocalization
F F
F
F
F F
F
F
S
F
F
F F
F
F
S
F
F
S
S
425 nm

F
F
S
469 nm
S
534 nm
Ring substituents have a big impact
F F
F F
F F
F
F
F
F
F
F
F
F
S
S
F
F
F
F
S
S
S
S
Et2N
534 nm
Irie, M. Chem. Rev. 2000, 100, 1685.
562 nm
NEt2
597 nm
27
O
O
S
O
O
O
N
S
550 nm
O
N
N
620 nm
O
O
O
O
O
S
578 nm
Thermally
unstable
O
O
O
Thermally
stable
O
O
O
MeO
O
MeO
N
S
534 nm
Irie, M. Chem. Rev. 2000, 100, 1685.
N
S
562 nm
CN
N
S
CN
597 nm
28
29

How quickly the reaction occurs upon irradiation
 Both cyclization and cycloreversion generally happen
≤ 10 picoseconds
 Pico- and femtosecond laser photolysis experiments

How many reactions occur with a given amount of energy (light)

Quantified by and dependent on:
 ε - Molar absorption coefficient
 Φ - Quantum Yield
Miyasaka, H., Arai, S., Tabata, A., Nobuto, T., Mataga, N., Irie, M. Chem. Phys. Lett. 1991, 230, 249. (Laser photolysis studies)
30

For a any given compound:
 Measure of how much light is absorbed at a given wavelength (M-1cm-1)
 Intrinsic property
F F
F
F
F
F
S
Electron rich substituents
S
Et2 N
NEt2
F F
F
F
F
F
S
Large π-conjugation
ε
S
Irie, M., Sakemura, K., Okinaka, M., Uchida, K. J. Org. Chem. 1995, 8305. (electron donating groups)
Bens, A. T., Frewert, D., Kodatis, K., Kryschi, C., Martin, H.-D., Trommsdorf, H. P. Eur. J. Org. Chem. 1998,, 2333. (polyene)
31
F F

F F
F
F
# chemical reactions
F
F
S

F
F
F
vis
# photons absorbed

UV
F
S
S
S
Antiparellel : Parallel ~ 1 : 1
Photocyclization can only proceed from
the antiparallel conformation
 Maximum φ for ring closure is
~ 0.50
Increase amount of
antiparallel conformer
Irie, M. Chem. Rev. 2000, 100, 1685.
32


Bridging the two thiophene units at 4 and 4’ positions
(cyclophane)
Compound
Φcyclization
UV
Not bridged
0.40
vis
Bridged
0.67
Compound
φcyclization
Monomer
0.40
Polymer
0.86
Incorporation into a polymer backbone
F F
F F
F
F
F F
F
F
F
F
F
F
F F
F
F
F
F
F
F
F
F
UV
S
S
S
S
S
vis
S
S
S
S
S
S
n
F
F
F
F
F F
S
n
F
F
F
F
F F
Takeshita, M., Nagai, M., Yamato T. Chem. Comm. 2003, 1496. (Cyclophane)
Stellacci, F., Bertarelli, C., Toscano, F., Gallazzi, M. C., Zolti, G., Zerbi, G. Adv. Mater. 1999, 11, 292. (Polymer backbone)
33
F F
F F
F
F
F
F
F
F
F
F
UV
NC
S
S
S
S
n
CN
vis
NC
S
S
n
n
n=
Φcycloreversion
0
0.075
1
0.0013
2
0.00013
π-conjugation
S
S
CN
n
Cycloreversion
Quantum yield
Irie, M., Eriguchi, T., Takada, T., Uchida, K. Tetrahedron 1997, 53, 12263. (Thiophene oligomers)
34
35


High power laser for writing and erasing
Low power laser for reading
O
O
O
O
O
O
UV
>106 readouts
vis
N
Oct
S
N
Oct
S
Tsujioka, T., Tatezono, F., Harada, T., Kuroki, K., Irie, M. Jpn. J. Appl. Phys. 1994, 33, 5788. (Superlow power readout)
Tsujioka, T., Kume, M., Irie, M. Jpn. J. Appl. Phys. 1995, 34, 6439. (Superlow power readout)
36

Detection using light whose energy cannot
induce reaction
 IR readout
 Fluorescence readout
CF3SO3 -
O
S
F F
F
F
O
F
F
hex
N
S
S
S
S hex S
S
S
O
N
H
N
N
S
O
S
N
H
N
Stellacci, F., Bertarelli, C., Toscano, F., Gallazzi, M. C., Zerbi, G. Chem. Phys. Lett. 1999, 302, 563.(IR readout)
Tsivgoulis, G. M., Lehn, J.-M. Angew. Chem. Int. Ed. 1995, 34, 1119. (Fluorescence readout)
Norsten, T. R., Branda, N. R. J. Am. Chem. Soc. 2001, 123, 1784. (Fluorescence readout)
Yeh, H.-C., Wu, W.-C., Chen, C.-T. Chem. Commun. 2003, 404. (Fluorescence readout)
N
H
N
N
H
N
37
Hydrogen bonding arms
Disulfide bonding arms
EtOH
or Δ


Information is “locked”
Release lock for erasing
Irie, M., Miyatake, O., Uchida, K., Eriguchi, T. J. Am Chem. Soc. 1994, 116, 9894.
38
39
In the last 10 years, different frameworks have appeared

S
S
MeO 2C
Ph
S
S
O
H
N
H
N
O
OMe
CO2Me
R
Ph
S
Ph
S
S
O
N
S
S
N
S
N
N
O
S
Ph
S
S
Ph
R
S
O

Compounds containing a perfluorocyclopentene bridging unit exhibit
best durability and photo-response

Maleimides for optical memory media
Krayushkin, M. M., Yarovenko, V. N., Semenov, S. L., Zavarzin, I. V., Ignatenko, A. V., Martynkin, A., Y., Uzhinov, B. M. Org. Lett. 2002,4, 3879. (2,5-dihydrothiophene)
Chen, Y., Zeng, D. X., Fan, M. G. Org. Lett. 2003, 5, 1435. (2,5-dihydrothiophene)
Chen, Y., Zeng, D. X., Xie, N., Dang, Y. Z. J. Org. Chem. 2005, 70, 5001. (2,5-dihydropyrrole)
Krayushkin, M. M., Ivanov, S. N., Martynkin, A. Y., Lichitscky, B. V., Dudinov, A. A., Uzhinov, B. M. Russ. Chem. Bull., Int. Ed. 2001, 50, 116. (Heterocycles)
Nakashima, T., Atsumi, K., Kawai, S., Nakagawa, T., Hasegawa, Y., Kawai, T. Eur. J. Org. Chem. 2007, 3212. (Heterocycles)
Traven, V. F., Bochkov, A. Y., Krayushkin, M. M., Yarovenko, V. N., Nabatov, B. V., Dolotov, S. M., Barachevsky, V. A., Beletskaya, I. P. Org. Lett. 2008, 10, 1319.
(Coumarinyl(thienyl)thiazoles)
Krayushkin, M. M., Shirinian, V. Z., Belen’kii, L. I., Shadronov, A. Y., Vorontsova, L. G., Starikova, Z. A. Russ. Chem. Bull., Int. Ed. 2001, 51, 1510. (Squaric acid)
40
F F
1) n-BuLi, TMEDA
2) ZnCl2
S
I2 , HIO 3
I
AcOH, H 2O
CCl4
77%
S
3) Pd(PPh 3) 4,
PhI
97%
1) n-BuLi,
THF, -78 o C
S
2)
F
F
F
F
S
S
F F
F
F
F
F
F
F
52%
Br
F F
1) n-BuLi, Et2O
S
OMe
2)
F F
F
F
F
F
F
F F
F
F
F
F
F
S
OMe
S
n-BuLi
F
F
THF
58%
F F
F
F
I 2, HIO4
2
AcOH
63%
OMe
S
. 2H O
F
F
S
F
F
Ar couplings
OMe
S
S
I
F
67%


Low yields, hard to scale up
Octafluorocyclopentene
 Expensive, not readily available, very volatile
Irie, M., Sakemura, K., Okinaka, M., Uchida, K. J. Org. Chem. 1995, 8305.
Nakashima, H., Irie, M. Macromol. Chem. Phys. 1999, 200, 683.
41
O F F O
Cl
F FF F
Br
NCS
S

S
PhH
82%
CHCl3
93%
O
n-BuLi
Br 2
Cl
F F
Cl
Cl
S
Et2 O, -78 o C
70%
Cl
F F
FF
S
O
Zn, TiCl3(THF)3
FF
S
Cl
THF
55%
Cl
F
F
F
F
S
S
Cl
Single electron transfer from low valent Titanium
Ti(III) or Ti(IV)
F
F F
F
Ar
Ar
O
O
Ar
Ar
F
Ti(0)
Ti
Ti(0)
Ti
Ti
O
O
Ti
Ti
O
O
F
F
O O
Ti
Zn
F
F F
F
F
Ar
F
F
Ar
F
F
F F
Lucas, L. N., de Jong, J. J. D., van Esch, J. H., Kellogg, R. M., Feringa, B. L. Eur. J. Org. Chem. 2003, 155.
Li, J. J. Name Reactions, 2nd ed.; Springer-Verlag, Berlin Heidelberg, 2003.
Ar
Ar
F
F
F
F
F F
42
(R)-(+)-1-phenylethylamine
MeOH
26%
NC
1) n-BuLi, THF
2) DMF
S
S
Cl
OHC
S
S
CHO
1) n-BuLi, THF
2) CO2 (s)
N
S
N
S
Ph
CN
piperidine
52%
Cl
Ph
EtOH, ref lux
72%
NC
CN
CN
NC
S
S
CMDT, NMM,
H 2 NC 12 H 25
81%
HOOC
S
S
COOH
CH2 Cl2
53%
C 12H 25
H
N
S
O
Lucas, L. N., de Jong, J. J. D., van Esch, J. H., Kellogg, R. M., Feringa, B. L. Eur. J. Org. Chem. 2003, 155.
H
N
S
C 12 H 25
O
43
1) n-BuLi, 3 Eq B(OBu) 3
THF
Cl
S
S
2) C6 H5 Br
Pd(PPh 3) 4, Na 2CO3 ,
ethylene glycol, H 2O,
THF, reflux
70%
Cl
S
S
1) n-BuLi, 1.5 Eq B(OBu)3
THF
2) Br
S
C12 H25
Pd(PPh3 )4 , Na2 CO 3,
ethylene glycol, H2 O,
THF, reflux
37%
1) n-BuLi, 1.5 Eq B(OBu)3
THF
S
Cl
S
S
C12 H25
2) Br
S
O
O
S
S
O
S
C12 H25
S
O
Pd(PPh3 )4, Na 2CO3 ,
ethylene glycol, H 2 O,
THF, ref lux
32%
Lucas, L. N., de Jong, J. J. D., van Esch, J. H., Kellogg, R. M., Feringa, B. L. Eur. J. Org. Chem. 2003, 155.
44
Perfluorocyclopentene bridging unit
F F
F F
B(OH)2
F
F
+
S
Cl
Pd2 dba3.CHCl3 1 mol%
PCy 3 2 mol%, CsF (3 Eq)
F
F
F
F
F
F
S
S
toluene/H2 O, reflux, 16h
88%
Cl
Maleimide bridging unit
Br
N
C6 H 13 O
O
1) HBpin, PdCl2 (PPh3 )2 , Et3N,
toluene, 120 oC
S
2) O
H
N
O
N
N
S
O
H
N
S
OC6 H 13
C 6H 13 O
O
Br
Br
O
2 M aqu. Na2 CO3 ,
toluene, 100 oC
56%
O
S
Bn
N
O
O
S
Hiroto, S., Suzuki, K., Kimiya, H., Shinokubo, H. Chem. Commun. 2011, 47, 7149. (Perfluorocyclopentene)
El Yahyaoui, A., Félix, G., Heynderickx, A., Moustrou, C., Samat, A. Tetrahedron 2007, 63, 9482. (Unsymmetrical maleimide)
Herder, M., Pätzel, M., Grubert, L., Hecht, S. Chem. Commun. 2007, 47, 460. (Maleimide)
45
Aldol type
O
Cl
NC
MeO
NH
1) (COCl)2 , DCE, ref lux
N
C18H 37
2) (NH2 CH 2 CN)2 .H 2SO4 ,
Et3 N, CH 2Cl2
77%
MeO
O
CN
MeO S
Et3 N
O
O
N
O
MeO
CH 2Cl2
68%
N
C18H 37
Yamaguchi, T., Matsu, M., Irie, M. Bull. Chem. Soc. Jpn 2005, 78, 1145.
N MeO
C18H 37
S
46

Functional dyes have a wide variety of applications
 Optoelectronic devices

Balance of structural features





Thermal stability
Low fatigue
Reaction induction at desired wavelength
Rapid response and high sensitivity
Non destructive readout (Memories)

Photochromic properties can be tuned for the specific application

Different synthetic approaches
47
Irie, M. Proc. Jpn Acad. Ser. B 2010, 86, 472.
48
Prof. Louis Barriault
Francis Barabé
Gabriel Bellavance
Stéphanie Lanoix
Patrick Levesque
Joel Marcotte
Philippe McGee
Mathieu Morin
Daniel Newbury
Jason Poulin
Dr. Guillaume Revol
Travis Schwantje
Boubacar Sow
Past Members:
Dr. David Lapointe
Dr. Maxime Riou
49

similar documents