Evaluation of Hip Pain in Runner`s

University of Colorado
Director of Primary Care Sports Medicine
Saturday, May 17, 2014
 Better perform a focused hip examination
 Recognize and manage improper running
biomechanics to prevent injuries
 Discuss how core stability impacts many
running injuries
 Apply these principles to return the
“athlete” back to running
 You will understand that
running is not evil
 Most of us were born to run!
 Newton Shoes: Physician
Advisory Board
 MuscleSound: Physician
advisor for software
development to
determine muscle
glycogen content using
 After running more than 28
hours, I am still smiling, why….
 I finally learned what I am
going to teach you
Tarahumara runner Arnulfo Quimare and Ultra-running legend Scott Jurek
It is all about Biomechanics
• Flexed at the waist
• Heel strike
• Over striding
• Low arm position
• Hip drops with each step
• Knee collapses in valgus
• No smile on his face, this
dude is suffering
copes with impact and
takeoff --extends from
spine to foot
foot strikesupport
 Intra-articular
 Chondral
 Labral
 Capsular
 Extra-articular
 Systemic
 Snapping hip
 ITB tendinitis
 Bursitis
 Flexor tendinosis
 SI joint pain
 Hamstring strain
 Soft tissue
 Iliopsoas
 Athletic pubalgia
 Hernia
 Adductor tendinosis
 Developmental Dysplasia of the Hip
 Legg Calve Perthes Disease
 Slipped Capital Epiphysis
 Previous Trauma
 History: symptom response
 Functional Movement Screen
 Weight Bearing tests
 PROM with over pressure – Flexion/Abduction
 Manual muscle testing
 Distraction/Compression with movement
 Ligament evaluation
 Marching test for sacroiliac movement
 Active/Passive:
 Flexion (110-120’)
 Extension (10-15’)
 Abduction (30-50’)
 Adduction (30’)
 Internal Rotation (0-50’) sup/prone
 External Rotation (30-90’) sup/prone
 Flexion:
 Psoas, Iliacus, rectus femoris, sartorius, pectineus,
adductor long/brev, gracilis
 Extension:
 Biceps femoris, semimembranosus, semitendinosus, glut
max, glut med (posterior part), adductor magnus
(ischiocondylar part)
 Adduction:
 Adductor longus, adductor brevis, adductor magnus,
gracilis, pectineus
 Abduction:
 Tensor fascia latae, glut minimus, glut medius, glut
maximus, sartorius
 Internal Rotation:
 Adductor long/brev/magnus, Glut med (anterior part),
glut minimus (anterior part), tensor fascia latae,
pectineus, gracilis.
 External Rotation
 Glut max, obturator int/ext, quadratus femoris,
piriformis, gemellus sup/inf, sartorius, glut med
(posterior part)
Flexion / Adduction / IR
Flexion / Abduction / ER
 Gluteus Medius Strength Test
 Gluteus Maximus Strength Test
 Adductor Testing
 Piriformis Test
 + if pain with stretching piriformis muscle
 Fulcrum Test
 + if pain is elicited
 Site of pain is usually near site of stress fracture
 First recognized importance in late 1980s and early 1990s
 General population: multiple exercise programs and
equipment focused on core stability and benefits of
improving stability
 First recognized importance in late 1980s and early 1990s
 General population: multiple exercise programs and
equipment focused on core stability and benefits of
improving stability
 Does this apply to runners?
 No universally accepted definition of core stability
 Kibler: “The ability to control the position and
motion of the trunk over the pelvis to allow
optimum production, transfer, and control of force
and motion to the terminal segment in integrated
kinetic chain activities”
 Includes the spine, hips, pelvis, proximal lower limbs,
and abdominal region
and Gluteals
Pelvic Floor and Hip
Girdle Musculature
 Strength of the core muscles:
 Allows the system to mechanically stabilize the
spine  then distribute and deliver
compressive, translational, and shear forces to
and from the rest of the body
 Plyometric training:
 Involves exercises in which the active muscles
are stretched prior to shortening
 Usually requires explosive strength training
 Invokes specific neural adaptations (ie,
increased activation of motor units)
 Less muscle hypertrophy than static strength
 Running is a plyometric activity
 Rehab from injuries:
 Benefits from strength exercises
 Benefits from plyometric training
 Integration of the two improves your results
 Return to running after an injury:
 Must be able to demonstrate competence with
plyometric exercise (proper running form)
 To perform plyometric exercises safely, must
increase core stability with static load strength
 Prevention of injury
 Treatment of injuries
 Effect on performance
 Back pain: delays in trunk motor control reflex are
predisposing factor (Cholewicki, 2005)
 Patellofemoral pain: weakness in the gluteus
medius predisposes to PFS (Willson, 2011)
 Hamstring injuries: early fatigue in abdominal
muscles likely a contributor (Devlin, 2000)
 Knee Ligament injury: increased trunk
displacement and decreased proprioception on
testing predicted knee ligament injury for females,
not males (Zazulak, 2007)
 Wide variety of movements associated with sports
 need sufficient strength in hip and trunk
muscles in all three planes of motion
 Contribution of specific muscles depends on
direction and magnitude of trunk loading
(Cholewicki 2002)
 Athletes may have good core strength when
tested by low exertion exams
 Need to do more functional testing
 Remember, this person is not just walking
around the house and going to the grocery store
 3 tests
 1. Pelvic alignment
 2. Single leg squat and hop test
 3. Side plank with side leg raise
t: forward
pelvic tilt
 Pelvic tilt
 Forward tilt: often see weakness in quadratus
lumborum, rectus abdominis, and obliques
 Single Leg Squat
 Global core stability
 Should see alignment maintained between hip,
knee, and ankle
 Watch for contralateral hip dropping and knee
moving into valgus
 If single leg squat performed competently, move
on to lateral step down test
Single leg squat
Good limb alignment
Single leg squat
Valgus collapse of knee
Single leg side step
Good limb alignment
 Hop test
 Similar to single leg squat, more dynamic
 Requires neuromuscular control, core strength
and stability
 Evaluate knee alignment, height of jump, and
stable, aligned soft landing
 Side plank
 Both sides
 Measures lateral core strength—Quadratus
 Examiner notes how long patient can hold
 Ideal length of holding: 45-60 seconds
 Side plank
 Side leg raise
 No trunk flexion
 Upper leg abducted completely with maximal
hip external rotation (toe pointed to ceiling)
 Fully recruits gluteus medius
 Examiner resists motion and evaluates strength
 Side leg raise
 Combining exercises
 If proficient with both side plank and side leg
raise  combine these exercises
 Assess neuromuscular coordination, hip
adductor strength, and abnormal recruitment of
the iliopsoas
 Weak abductors  recruit iliopsoas and see
forward flexion at waist
 Goal to perform 30 on each side
 Combined side plank and side leg raise
 Clinicians should not
assume athletes are more
competent with dynamic
core stability than the
general population
 Dynamic testing can
unmask subtle deficiencies
 Important to achieve adequate static core strength
prior to pushing dynamic, plyometric rehab
 Often therapist or athlete will push dynamic
plyometric rehab too soon  re-injury
 Need at least 3 sets of 15 with combined activity to
progress to plyometric rehab
 Important to maintain once athlete returned to
 Continue 3 sets of 30 of the combined side plank
and side leg raise on each side, 3 days per week
 The focused hip examination often reveals
where the problem is
 It is all about the biomechanics , recognize and
manage improper running form
 Assess core stability and first fix the weakness in
their static hip stabilizers
 Before returning a runner back to running
(plyometrics) make sure their static hip
stabilizers are strong
Akuthota V, Ferreiro A, Moore T, et al. Core stability exercise principles. Curr Sports Med Rep. 2008; 7:39-44.
Bonacci J, Green D, Saunders PU, et al. Plyometric training as an intervention to correct altered neuromotor
control during running after cycling in triathletes: a preliminary randomised controlled trial. Phys Ther Sport.
2011; 12:15-21.
Chelly MS, Ghenem MA, Abid K, et al. Effects of in-season short-term plyometric training program on leg
power, jump, and sprint performance of soccer players. J Strength Cond Res. 2010; 24:2670-6.
Chelly MS, Ghenem MA, Abid K, et al. Effects of in-season short-term plyometric training program on leg
power, jump, and sprint performance of soccer players. J Strength Cond Res. 2010; 24:2670-6.
Cholewicki J, Silfies SP, Shah RA, et al. Delayed trunk muscle reflex responses increase the risk of low back
injuries. Spine. 2005; 30:2614-20.
Devlin L. Recurrent posterior thigh symptoms detrimental to performance in rugby union: predisposing
factors. Sports Med. 2000; 29:273-87.
DiStefano LJ, Padua DA, Blackburn JT, et al. Integrated injury prevention program improves balance and
vertical jump height in children. J Strength Cond Res. 2010; 24:332-42.
Earl J, Hoch A. A proximal strengthening program improves pain, function, and biomechanics in women with
patellofemoral pain syndrome. Am J Sports Med. 2011; 39:154-63.
Hewett TE, Lindenfeld TN, Riccobene JV, et al. The effect of neuromuscular training on the incidence of knee
injury in female athletes. A prospective study. Am J Sports Med. 1999; 27:699-706.
Hölmich P, Larsen K, Krogsgaard K, et al. Exercise program for prevention of groin pain in football players: a
cluster-randomized trial. Scand J Med Sci Sports. 2010; 20:814-21.
Kibler WB, Press J, Sciascia A. The role of core stability in athletic function. Sports Med. 2006; 36:189-98.
Kiesel K, Plisky P, Butler R. Functional movement test scores improve following a standardized off-season
intervention program in professional football players. Scand J Med Sci Sports. 2011; 21:287-92.
Kiesel K, Plisky P, Voight M. Can serious injury in professional football be predicted by a
preseason functional movement screen? N Am J Sports Phys Ther. 2007; 2:147-58.
Leetun DT, Ireland ML, Willson JD, et al. Core stability measures as risk factors for lower
extremity injury in athletes. Med Sci Sports Exerc. 2004; 36:926-34.
Markovic G, Jukic I, Milanovic D, et al. Effects of sprint and plyometric training on muscle
function and athletic performance. J Strenth Cond Res. 2007; 21:543-9.
Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br
J Sports Med. 2007; 41:349-55.
Nesser TW, Huxel KC, Tincher JL, et al. The relationship between core stability and performance
in division I football players. J Strength Cond Res. 2008; 22:1750-4.
Okada T, Huxel KC, Nesser TW. Relationship between core stability, functional movement, and
performance. J Strength Cond Res. 2011; 25:252-61.
Saunders PU, Telford RD, Pyne DB, et al. Short-term plyometric training improves running
economy in highly trained middle and long distance runners. J Strength Cond Res. 2006; 20:94754.
Sharrock C, Cropper J, Mostad J, et al. A pilot study of core stability and athletic performance: is
there a relationship? Int J Sports Phys Ther. 2011; 6:63-74.
Willson JD, Dernozek TW, Arndt RL, et al. Gluteal muscle activation during running in females
with and without patellofemoral pain syndrome. Clin Biomech. 2011; 26:735-40.
Zazulak BT, Hewett TE, Reeves NP, et al. Deficits in neuromuscular control of the trunk predict
knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med. 2007;

similar documents