### Chapter 3: The Structure of Crystalline Solids

Chapter 3: The Structure of Crystalline Solids
• How do atoms assemble into solid structures?
• How does the density of a material depend on
its structure?
• When do material properties vary with the
sample (i.e., part) orientation?
Chapter 3 - 1
Energy and Packing
• Non dense, random packing
Energy
typical neighbor
bond length
typical neighbor
bond energy
• Dense, ordered packing
r
Energy
typical neighbor
bond length
typical neighbor
bond energy
r
Dense, ordered packed structures tend to have
lower energies.
Chapter 3 - 2
Materials and Packing
Crystalline materials...
• atoms pack in periodic, 3D arrays
• typical of: -metals
-many ceramics
-some polymers
crystalline SiO2
Callister & Rethwisch 8e.
Noncrystalline materials...
• atoms have no periodic packing
• occurs for: -complex structures
-rapid cooling
"Amorphous" = Noncrystalline
Si
Oxygen
noncrystalline SiO2
Callister & Rethwisch 8e.
Chapter 3 - 3
Metallic Crystal Structures
• How can we stack metal atoms to minimize
empty space?
2-dimensions
vs.
Now stack these 2-D layers to make 3-D structures
Chapter 3 - 4
Metallic Crystal Structures
• Tend to be densely packed.
• Reasons for dense packing:
- Typically, only one element is present, so all atomic
- Metallic bonding is not directional.
- Nearest neighbor distances tend to be small in
order to lower bond energy.
- Electron cloud shields cores from each other
• Have the simplest crystal structures.
We will examine three such structures...
Chapter 3 - 5
Simple Cubic Structure (SC)
• Rare due to low packing density (only Po has this structure)
• Close-packed directions are cube edges.
• Coordination # = 6
(# nearest neighbors)
Click once on image to start animation
(Courtesy P.M. Anderson)
Chapter 3 - 6
Atomic Packing Factor (APF)
Volume of atoms in unit cell*
APF =
Volume of unit cell
*assume hard spheres
• APF for a simple cubic structure = 0.52
atoms
unit cell
a
R=0.5a
APF =
volume
atom
4
p (0.5a) 3
1
3
a3
close-packed directions
contains 8 x 1/8 =
1 atom/unit cell
Callister & Rethwisch 8e.
volume
unit cell
Chapter 3 - 7
Body Centered Cubic Structure (BCC)
• Atoms touch each other along cube diagonals.
--Note: All atoms are identical; the center atom is shaded
differently only for ease of viewing.
ex: Cr, W, Fe (), Tantalum, Molybdenum
• Coordination # = 8
Click once on image to start animation
(Courtesy P.M. Anderson)
Callister & Rethwisch 8e.
2 atoms/unit cell: 1 center + 8 corners x 1/8
Chapter 3 - 8
Atomic Packing Factor: BCC
• APF for a body-centered cubic structure = 0.68
3a
a
2a
Fig. 3.2(a), Callister &
Rethwisch 8e.
atoms
R
a
4
Close-packed directions:
length = 4R = 3 a
volume
atom
p ( 3a/4) 3
2
unit cell
3
APF =
volume
3
a
unit cell
Chapter 3 - 9
Face Centered Cubic Structure (FCC)
• Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded
differently only for ease of viewing.
ex: Al, Cu, Au, Pb, Ni, Pt, Ag
• Coordination # = 12
Adapted from Fig. 3.1, Callister & Rethwisch 8e.
Click once on image to start animation
(Courtesy P.M. Anderson)
4 atoms/unit cell: 6 face x 1/2 + 8 corners x 1/8
Chapter 3 - 10
Atomic Packing Factor: FCC
• APF for a face-centered cubic structure = 0.74
maximum achievable APF
Close-packed directions:
length = 4R = 2 a
2a
a
Fig. 3.1(a),
Callister &
Rethwisch 8e.
Unit cell contains:
6 x 1/2 + 8 x 1/8
= 4 atoms/unit cell
atoms
volume
4
3
p ( 2a/4)
4
unit cell
atom
3
APF =
volume
3
a
unit cell
Chapter 3 - 11
FCC Stacking Sequence
• ABCABC... Stacking Sequence
• 2D Projection
B
B
C
A
B
B
B
A sites
C
C
B sites
B
B
C sites
• FCC Unit Cell
A
B
C
Chapter 3 - 12
Hexagonal Close-Packed Structure
(HCP)
• ABAB... Stacking Sequence
• 3D Projection
c
a
• 2D Projection
A sites
Top layer
B sites
Middle layer
A sites
Bottom layer
Callister & Rethwisch 8e.
• Coordination # = 12
• APF = 0.74
• c/a = 1.633
6 atoms/unit cell
ex: Cd, Mg, Ti, Zn
Chapter 3 - 13
Theoretical Density, r
Density = r =
r =
where
Mass of Atoms in Unit Cell
Total Volume of Unit Cell
nA
VC NA
n = number of atoms/unit cell
A = atomic weight
VC = Volume of unit cell = a3 for cubic
= 6.022 x 1023 atoms/mol
Chapter 3 - 14
Theoretical Density, r
• Ex: Cr (BCC)
A = 52.00 g/mol
R = 0.125 nm
n = 2 atoms/unit cell
Fig. 3.2(a), Callister &
Rethwisch 8e.
atoms
unit cell
r=
volume
unit cell
R
a
2 52.00
a3 6.022 x 1023
a = 4R/ 3 = 0.2887 nm
g
mol
rtheoretical = 7.18 g/cm3
ractual
atoms
mol
= 7.19 g/cm3
Chapter 3 - 15
Densities of Material Classes
In general
rmetals > rceramics > rpolymers
30
Why?
Metals have...
Ceramics have...
• less dense packing
• often lighter elements
Polymers have...
r (g/cm3 )
• close-packing
(metallic bonding)
• often large atomic masses
• low packing density
(often amorphous)
• lighter elements (C,H,O)
Composites have...
• intermediate values
Metals/
Alloys
20
Platinum
Gold, W
Tantalum
10
Silver, Mo
Cu,Ni
Steels
Tin, Zinc
5
4
3
2
1
0.5
0.4
0.3
Titanium
Aluminum
Magnesium
Graphite/
Ceramics/
Semicond
Composites/
fibers
Polymers
Based on data in Table B1, Callister
*GFRE, CFRE, & AFRE are Glass,
Carbon, & Aramid Fiber-Reinforced
Epoxy composites (values based on
60% volume fraction of aligned fibers
in an epoxy matrix).
Zirconia
Al oxide
Diamond
Si nitride
Glass -soda
Concrete
Silicon
Graphite
PTFE
Silicone
PVC
PET
PC
HDPE, PS
PP, LDPE
Glass fibers
GFRE*
Carbon fibers
CFRE*
Aramid fibers
AFRE*
Wood
Data from Table B.1, Callister & Rethwisch, 8e.
Chapter 3 - 16
Crystals as Building Blocks
• Some engineering applications require single crystals:
-- diamond single
crystals for abrasives
(Courtesy Martin Deakins,
GE Superabrasives,
Worthington, OH. Used with
permission.)
Fig. 8.33(c), Callister &
Rethwisch 8e. (Fig. 8.33(c)
courtesy of Pratt and
Whitney).
• Properties of crystalline materials
often related to crystal structure.
-- Ex: Quartz fractures more easily
along some crystal planes than
others.
(Courtesy P.M. Anderson)
Chapter 3 - 17
Polycrystals
• Most engineering materials are polycrystals.
Anisotropic
color inset pages of
Callister 5e.
(Fig. K is courtesy of
Paul E. Danielson,
Teledyne Wah Chang
Albany)
1 mm
• Nb-Hf-W plate with an electron beam weld.
• Each "grain" is a single crystal.
• If grains are randomly oriented,
Isotropic
overall component properties are not directional.
• Grain sizes typically range from 1 nm to 2 cm
(i.e., from a few to millions of atomic layers).
Chapter 3 - 18
Single vs Polycrystals
• Single Crystals
E (diagonal) = 273 GPa
Data from Table 3.3,
Callister & Rethwisch
8e. (Source of data is
R.W. Hertzberg,
Deformation and
Fracture Mechanics of
Engineering Materials,
3rd ed., John Wiley and
Sons, 1989.)
-Properties vary with
direction: anisotropic.
-Example: the modulus
of elasticity (E) in BCC iron:
• Polycrystals
-Properties may/may not
vary with direction.
-If grains are randomly
oriented: isotropic.
(Epoly iron = 210 GPa)
-If grains are textured,
anisotropic.
E (edge) = 125 GPa
200 mm
4.14(b), Callister &
Rethwisch 8e.
(Fig. 4.14(b) is courtesy
of L.C. Smith and C.
Bureau of Standards,
Washington, DC [now
the National Institute of
Standards and
Technology,
Gaithersburg, MD].)
Chapter 3 - 19
Polymorphism
• Two or more distinct crystal structures for the same
material (allotropy/polymorphism)
iron system
titanium
liquid
, -Ti
1538ºC
-Fe
BCC
carbon
1394ºC
diamond, graphite
-Fe
FCC
912ºC
BCC
-Fe
Chapter 3 - 20
Crystal Systems
Unit cell: smallest repetitive volume which
contains the complete lattice pattern of a crystal.
7 crystal systems
14 crystal lattices
a, b, and c are the lattice constants
Fig. 3.4, Callister & Rethwisch 8e.
Chapter 3 - 21
Point Coordinates
z
Point coordinates for unit cell
center are
111
c
a/2, b/2, c/2
y
000
a
x
½½½
b
Point coordinates for unit cell
corner are 111

z
2c



b
y
Translation: integer multiple of
lattice constants  identical
position in another unit cell
b
Chapter 3 - 22
Crystallographic Directions
z
pt. 2
Example 2:
pt. 1 x1 = a, y1 = b/2, z1 = 0
pt. 2 x2 = -a, y2 = b, z2 = c
y
x
pt. 1:
tail
=> -2, 1/2, 1
Multiplying by 2 to eliminate the fraction
-4, 1, 2 => [ 412 ]
where the overbar represents a
negative index
families of directions <uvw>
Chapter 3 - 23
Crystallographic Directions
z
Algorithm
1. Vector repositioned (if necessary) to pass
through origin.
2. Read off projections in terms of
unit cell dimensions a, b, and c
y 3. Adjust to smallest integer values
4. Enclose in square brackets, no commas
[uvw]
x
ex: 1, 0, ½ => 2, 0, 1 => [ 201 ]
-1, 1, 1 => [ 111 ]
where overbar represents a
negative index
families of directions <uvw>
Chapter 3 - 24
Linear Density
• Linear Density of Atoms  LD =
Number of atoms
Unit length of direction vector
[110]
ex: linear density of Al in [110]
direction
a = 0.405 nm
# atoms
a
Fig. 3.1(a),
Callister &
Rethwisch 8e.
LD =
length
2
= 3.5 nm-1
2a
Chapter 3 - 25
HCP Crystallographic Directions
z
Algorithm
a2
-
a3
a1
1. Vector repositioned (if necessary) to pass
through origin.
2. Read off projections in terms of unit
cell dimensions a1, a2, a3, or c
3. Adjust to smallest integer values
4. Enclose in square brackets, no commas
[uvtw]
a
2
Callister & Rethwisch 8e.
ex:
½, ½, -1, 0
-a3
a2
2
=>
[ 1120 ]
a3
dashed red lines indicate
projections onto a1 and a2 axes
a1
2
a1
Chapter 3 - 26
HCP Crystallographic Directions
• Hexagonal Crystals
– 4 parameter Miller-Bravais lattice coordinates are
related to the direction indices (i.e., u'v'w') as
follows.
z
[ u 'v 'w ' ]  [ uvtw ]
a2
-
a3
a1
1
u = (2 u ' - v ')
3
1
v = (2 v ' - u ')
3
t = - (u +v )
w = w'
Fig. 3.8(a), Callister & Rethwisch 8e.
Chapter 3 - 27
Crystallographic Planes
Callister & Rethwisch 8e.
Chapter 3 - 28
Crystallographic Planes
• Miller Indices: Reciprocals of the (three) axial
intercepts for a plane, cleared of fractions &
common multiples. All parallel planes have
same Miller indices.
• Algorithm
1. Read off intercepts of plane with axes in
terms of a, b, c
2. Take reciprocals of intercepts
3. Reduce to smallest integer values
4. Enclose in parentheses, no
commas i.e., (hkl)
Chapter 3 - 29
Crystallographic Planes
z
example
1. Intercepts
2. Reciprocals
3.
Reduction
a
1
1/1
1
1
4.
Miller Indices
(110)
example
1. Intercepts
2. Reciprocals
3.
Reduction
a
1/2
1/½
2
2
4.
Miller Indices
(100)
b
1
1/1
1
1
c

1/
0
0
c
y
b
a
x
b

1/
0
0
c

1/
0
0
z
c
y
a
b
x
Chapter 3 - 30
Crystallographic Planes
z
example
1. Intercepts
2. Reciprocals
3.
Reduction
4.
Miller Indices
a
1/2
1/½
2
6
b
1
1/1
1
3
(634)
c
c
3/4
1/¾
4/3

4 a
x


y
b
Family of Planes {hkl}
Ex: {100} = (100), (010), (001), (100), (010), (001)
Chapter 3 - 31
Crystallographic Planes (HCP)
• In hexagonal unit cells the same idea is used
z
example
1. Intercepts
2. Reciprocals
3.
Reduction
a1
1
1
1
1
a2

1/
0
0
a3
-1
-1
-1
-1
c
1
1
1
1
a2
a3
4.
Miller-Bravais Indices
(1011)
a1
Callister & Rethwisch 8e.
Chapter 3 - 32
Crystallographic Planes
•
•
We want to examine the atomic packing of
crystallographic planes
Iron foil can be used as a catalyst. The
atomic packing of the exposed planes is
important.
a) Draw (100) and (111) crystallographic planes
for Fe.
b) Calculate the planar density for each of these
planes.
Chapter 3 - 33
Virtual Materials Science & Engineering (VMSE)
• VMSE is a tool to visualize materials science topics such as
crystallography and polymer structures in three dimensions
• Available in Student Companion Site at www.wiley.com/college/callister
and in WileyPLUS
Chapter 3 - 34
VMSE: Metallic Crystal Structures &
Crystallography Module
• VMSE allows you to view crystal structures, directions, planes,
etc. and manipulate them in three dimensions
Chapter 3 - 35
Unit Cells for Metals
• VMSE allows you to view the unit cells and manipulate
them in three dimensions
• Below are examples of actual VMSE screen shots
FCC Structure
HCP Structure
Chapter 3 - 36
VMSE: Crystallographic Planes Exercises
Additional practice on indexing crystallographic planes
Chapter 3 - 37
Planar Density of (100) Iron
Solution: At T < 912ºC iron has the BCC structure.
2D repeat unit
(100)
Planar Density =
area
2D repeat unit
1
a2
=
4 3
R
3
Radius of iron R = 0.1241 nm
Adapted from Fig. 3.2(c), Callister & Rethwisch 8e.
atoms
2D repeat unit
a=
1
4 3
R
3
atoms
atoms
19
= 1.2 x 10
2 = 12.1
2
nm
m2
Chapter 3 - 38
Planar Density of (111) Iron
Solution (cont): (111) plane
1 atom in plane/ unit surface cell
2a
atoms in plane
atoms above plane
atoms below plane
h=
3
a
2
2
atoms
2D repeat unit
 4 3  16 3 2
2
area = 2 ah = 3 a = 3 
R  =
R
3
 3

1
atoms =
= 7.0
2
Planar Density =
area
2D repeat unit
16 3
3
R
2
nm
0.70 x 1019
atoms
m2
Chapter 3 - 39
VMSE Planar Atomic Arrangements
• VMSE allows you to view planar arrangements and rotate
them in 3 dimensions
BCC (110) Plane
Chapter 3 - 40
X-Ray Diffraction
• Diffraction gratings must have spacings comparable to
• Can’t resolve spacings  
• Spacing is the distance between parallel planes of
atoms.
Chapter 3 - 41
X-Rays to Determine Crystal Structure
• Incoming X-rays diffract from crystal planes.
extra
distance
travelled
by wave “2”
q
q

d
Measurement of
critical angle, qc,
allows computation of
planar spacing, d.
reflections must
be in phase for
a detectable signal
Callister & Rethwisch 8e.
spacing
between
planes
X-ray
intensity
(from
detector)
n
d=
2 sin qc
q
qc
Chapter 3 - 42
X-Ray Diffraction Pattern
z
z
Intensity (relative)
c
a
x
z
c
b
y (110)
a
x
c
b
y
a
x (211)
b
(200)
Diffraction angle 2q
Diffraction pattern for polycrystalline -iron (BCC)
Adapted from Fig. 3.22, Callister 8e.
Chapter 3 - 43
y
SUMMARY
• Atoms may assemble into crystalline or
amorphous structures.
• Common metallic crystal structures are FCC, BCC, and
HCP. Coordination number and atomic packing factor
are the same for both FCC and HCP crystal structures.
• We can predict the density of a material, provided we
know the atomic weight, atomic radius, and crystal
geometry (e.g., FCC, BCC, HCP).
• Crystallographic points, directions and planes are
specified in terms of indexing schemes.
Crystallographic directions and planes are related
to atomic linear densities and planar densities.
Chapter 3 - 44
SUMMARY
• Materials can be single crystals or polycrystalline.
Material properties generally vary with single crystal
orientation (i.e., they are anisotropic), but are generally
non-directional (i.e., they are isotropic) in polycrystals
with randomly oriented grains.
• Some materials can have more than one crystal
structure. This is referred to as polymorphism (or
allotropy).
• X-ray diffraction is used for crystal structure and
interplanar spacing determinations.
Chapter 3 - 45
ANNOUNCEMENTS