What is a Space Penetrator?

Report
29 May 2014, UCM, Madrid
Igone Urdampilleta
Contents
•
•
•
•
•
What is a Space Penetrator?
Internal Architecture
Heritage
Scientific Motivation
Possible targets:
 Moon
 Mars
 Europa
• Summary
• References
Space Penetrators
2
What is a Space Penetrator?
• Low mass projectile to sample and analyze the
surface and subsurface of a planet or satellite
• Mass ~5-20kg
• Dimensions ~0.5mx0.2m
• High impact speed ~200-500m/s
• Very tough ~10.000-50.000g
• Penetrate surface ~0.2-3m
Sand (Martian Soil) and
Ice (Icy body) tests
300m/s, 24.000g
Courtesy of Uk Penetratror Consortium, [1]
Space Penetrators
3
Internal Architecture
Radiation sensor: Subsurface
dose rate, age and material
decay
Mass spectrometer: volatiles
and biologically important
species
Magnetometers:
possible internal ocean
-Descent Camera
-Auxiliary Systems
-Instrumentations:
1. Environment
2. Geophysics
(surface/chemistry)
3. Geophysics
(interior)
Batteries/RHU
Accelerometers
Power
Communications
Processing
Accelerometers: Surface and Subsurface
material (harness/composition)
Thermal sensor: Subsurface T, regolith T and
heat flow
Batteries/RHU, Data logger
Space Penetrators
Micro-seismometers:
Determine existence of
interior oceans, structure
and seismic activity
Drill assembly: Subsurface
mineralogy and material
Gowen,R. et al, IPPW7, 2010
4
Heritage
• Deep Space 2 and Mars 96 failed
• Lunar-A (space qualified) and MoonLITE cancelled
Mars 96
Deep Space 2
Courtesy of NASA [3]
•
•
•
•
NASA mission launched in 1999
Mission to Mars
Mars Polar Lander with 2 DS2
Reached Mars, but no comms
Space Penetrators
Courtesy of Russian Space [4]
•
•
•
•
Russian Space Forces
Mission to Mars
Launched in 1996
Failed to leave Earth orbit
5
Scientific Motivation
•
•
•
•
In-situ astrobiological and geophysical investigation
In-situ subsurface chemical inventory
Direct characterization of landing site
Synergy with orbiting instrument data
Advantages:
• Hardly accessible sites
• Simpler architecture
• Cost effective:
• Low mass
• High instruments
heritage
• Similar payload for
many surfaces
Space Penetrators
Disadvantages:
• High impact survivability
• Compact and low mass
payload
• Limited lifetime (only
batteries)
6
Possible Targets
• Rocky and icy bodies
Space Penetrators
7
Moon: Lunar-A
•
•
•
•
•
Space qualified mission cancelled in 2007
Objectives: Lunar interior by seismic and
heat-flow experiments
Payload: 2 penetrators (near and far side)
Mass:~45kg with PDS
V~285m/s, Impact ~ 8000g, Depth~1-3m
Space Penetrators
Courtesy of ISAS/JAXA
8
Moon: MoonLITE
• MoonLITE: Moon Lightweight Interior
and Telecoms Experiment (UK)
• Objectives: Lunar seismic environment,
polar water, volatiles and ISRU
• Payload: 4 penetrators
• Near side Apollo landing
• Two Polar regions
• Far side
• Duration: >1year for seismic network
• Mass: ~13kg +23kg propulsion
• V~300cm/s
Space Penetrators
Gao, Y. et al 2007
Gowen,R. et al, DOI EJSM/Laplace
9
Mars: METNET
Courtesy of FMI [5]
•
•
•
•
Atmospheric Mission to Mars
Objectives:
• Seismic activity and internal structure
• Meteorological and environment study
MEIGA, METNET precursor -> INTA and UCM
Inflatable Entry and Descent System (16.8kg):
1. IBU (Inflatable Braking Unit)
2. AIBU (Additional IBU)
Space Penetrators
Courtesy of FMI [5]
10
Mars: MetNet
Courtesy of FMI [5]
1. Atmospheric Instruments
• MetBaro-Presure
• MetHumi-Humidity
• Temperature Sensor
Space Penetrators
3. Composition and
2. Optical Devices
Structure devices
• PatCam
• Magnetometer
• MetSis-Irradiance
• Dust Sensor
11
Europa: EJSM
• EJSM: Europa-Jupiter System Mission (JUICE)
• Space Penetrator Objectives:
• The internal structure and its dynamics
• The existence and characteristics of
subsurface ocean
• Astrobiology markers
• Harder ice impact material, faster body
• Mass: ~14.3kg +50kg PDS
• Long: ~31cm
Gowen,R. et al, IPPW7, 2010
Courtesy of Astrium
Space Penetrators
12
Summary
• Low mass projectile for planetary
exploration (rocky and icy bodies)
• In-situ analysis and sampling of
environment and subsurface
• Cost effective technology
• Multi-landing sites or multi-target missions
• No successful mission yet
• Recent increase of Technology Readiness
Level (TRL)
Space Penetrators
13
References
•
•
•
•
•
•
•
•
•
Kato,M., Current Status of Japananise Penetrator Mission, ISAS/JAXA
H Mizutani et al 2005, J. Earth Syst. Sci. 114, No. 6
Gao,Y. et al 2007, DGLR Int. Symp. “To Moon and beyond”, Bremen,
Germany
Gowem, R. et Penetrator Consortium, 2008, Penetrator for TSSM,
TSSM Meeting, Monrovia
Gowen, R. et Penetrator Consortium, 2009, An Update on MoonLITE,
EGU, Viena
Gowen, R. et Penetrator Consortium, 2009, Astrobiologycal
Signatures with Penetrators on Europa, Biosignatures on Exoplanets
Workshop, Mulhouse
Gowen, R. et Penetrator Consortium, 2010, Potential Applications of
Micro-Penetrators within the Solar System,IPPW7, Barcelona
Skulionva, M. et al 2011, World Academic of Science, Engineering
and Technology, Vol. 55
Gowen, R. et al, Surface Element Penetrators, DOI to EJSM/Laplace
Space Penetrators
14
References
LINKS
[1] ESA: http://sci.esa.int/future-missions-office/52782-high-speedtests-demonstrate-space-penetrator-concept/
[2] UK PENETRATOR CONSORTIUM: http://www.mssl.ucl.ac.uk/
planetary/missions/ Micro_Penetrators.php
[3] DS2:http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=
DEEPSP2
[4] MARS 96: http://www.russianspaceweb.com/mars96.html
[5] METNET: http://metnet.fmi.fi/index.php
[6] MEIGA: http://meiga-metnet.org/
[7] EUROPA PENETRATOR:http://www.youtube.com/
watch?v=o1A04qzXCgQ
Space Penetrators
15
Space Penetrators
16
Space Penetrator Descent Sequence
1. Descent
Module release
from Orbiter
Spin-Down
2. Cancel orbital
velocity
3. Re-orient
4. PDS (Penetrator
Delivery System)
separation from
penetrator
Gowen,R. et al, DOI EJSM/Laplace
Space
Penetrators
Delivery
sequence courtesy SSTL
Reorient
Penetrator
Separation
5. PDS fly away
prior to surface
Impact
6. Operate from
below surface
Moon
Characteristics:
Telluric satellite
No atmosphere, no plate tectonics
>30.000 impact craters >1km
Dark zones (maria):
- craters, younger, 15% area
• Bright zones (terrae):
+ craters, older, 85% area
•
•
•
•
Science Objectives (Gao,Y. et al 2007) :
• Volatiles in the shadowed lunar craters
• Lunar seismology: interior and core
• In-situ resources, ISRU (water ice/radiation/quakes)
• Planetary penetrator demonstrator
Space Penetrators
18
Mars
Characteristics:
Telluric planet
Atmosphere
No plate tectonics
Changing topography due to
seasonal variation and dust storms
• Polar ice caps
•
•
•
•
Science objectives:
•
•
•
•
Seismic activity and internal structure
Astrobiology markers from depths >2m
Meteorological and environment study
Possible landing sites:
• Polar caps
• <40º for seismic network
Space Penetrators
19
Europa
Characteristics:
•
•
•
•
•
•
•
Water-icy satellite
Atmosphere-trace Oxygen
Strong tidal forces
Lower slopes/smoother surface
Less regolith (young)
Possible subsurface ocean
Habitable? Life?
Science objectives (Gowen,R. et al, DOI EJSM/Laplace) :
•
•
•
•
The internal structure and its dynamics
The existence and characteristics of subsurface ocean
Bio-signatures and Environment in near-surface
Synergy data with remote sensing
Space Penetrators
20

similar documents