6 Distribusi Binomial dan Poisson

Report
Distribusi Probabilitas ()
Variabel Acak
Variabel acak merupakan suatu variabel yang nilainya
ditentukan dari hasil percobaan.
Variabel acak ini dibedakan atas dua macam yaitu variabel
acak diskrit dan variabel acak kontinu
Variabel Acak Diskrit
Variabel yang dapat memiliki sejumlah nilai yang dapat
dihitung atau sejumlah nilai yang terbatas jumlahnya.
Misalnya :
1. Banyak produk cacat dalam satu kali proses produksi
2. Jumlah mahasiswa yang D.O dalam tahun tertentu
3. Banyaknya mobil yang terjual dalam sebulan
4. Banyaknya kecelakaan yang terjadi dalam setahun, dsb
Variabel Acak Kontinu
Variabel acak kontinu adalah variabel yang dapat memiliki nilai
yang tak berhingga yang berkaitan dengan titik-titik dalam
suatu interval garis.
Misalnya :
1. Lamanya waktu untuk melengkapi suatu operasi perakitan
dalam suatu pabrik
2. Jarak antara penyalur dan pembeli, dsb
Distribusi Peluang
Berdasarkan jenis variabel acaknya, maka distribusi peluang
suatu kejadian dibedakan dua macam yaitu
- Distribusi Peluang Diskrit : Distribusi Binomial
Distribusi Poisson
- Distribusi Peluang Kontinu : Distribusi Normal
Distribusi Binomial/Bernoulli
- Dikembangkan oleh James Bernoulli (1654-1705)
Ciri-ciri :
1.
Setiap percobaan hanya memiliki dua hasil yang
mungkin yaitu “Sukses” dan “Gagal”
Distribusi Binomial/Bernoulli
Ciri-ciri :
2.
Peluang sukses setiap percobaan harus sama, dinyatakan
dengan p. Sedangkan peluang gagal dinyatakan dengan
q=1-p, dan jumlah p dan q harus sama dengan satu.
3.
Jumlah percobaan, dinyatakan dengan n, harus tertentu
jumlahnya.
Peluang Kejadian Distribusi Binomial
Peluang Kejadian Distribusi Binomial
Berdasarkan data perusahaan penyedia layanan internet, 20% dari
konsumen menyatakan sangat puas dengan pelayanan perusahaan,
40% menyatakan puas, 25% menyatakan biasa saja dan sisanya
menyatakan kurang puas.
Apabila kita bertemu dengan 5 orang dari konsumen yang pernah
menggunakan layanan internet di perusahaan tsb, berapakah peluang :
Peluang Kejadian Distribusi Binomial
a)
b)
c)
d)
Paling banyak 2 di antaranya menyatakan sangat puas.
Paling sedikit 1 di antaranya menyatakan kurang puas
Tepat 2 diantaranya menyatakan biasa saja
Ada 2 sampai 4 yang menyatakan puas
Peluang Kejadian Distribusi Binomial
a)
Paling banyak 2 di antaranya menyatakan sangat puas.
X≤2
P(X;n) = P(0;5) + P(1;5) + P(2;5)
P(0;5) = (5!/0!5!) . 0,200 . 0,805 = 0,32768
P(1;5) = (5!/1!4!) . 0,201 . 0,804 = 0,40960
P(2;5) = (5!/2!3!) . 0,202 . 0,803 = 0,20480
Jadi peluang 2 orang konsumen menyatakan puas adalah 0,94208 atau 94,2%
Peluang Kejadian Distribusi Binomial
b)
Paling sedikit 1 di antaranya menyatakan kurang puas
X≥1
P(X;n) = P(1;5) + P(2;5) + P(3;5) + P(4;5) + P(5;5)
P(1;5) = (5!/1!4!) . 0,151 . 0,854 =
P(2;5) = (5!/2!3!) . 0,152 . 0,853 =
… dst
Jadi peluang Paling sedikit 1 di antaranya menyatakan kurang puas adalah …
Peluang Kejadian Distribusi Binomial
c)
Tepat 2 diantaranya menyatakan biasa saja
X=2
P(X;n) = P(2;5)
d)
Ada 2 sampai 4 yang menyatakan puas
2≤X≤4
P(X;n) = P(2;5) + P(3;5) + P(4;5)
Mean dan Variansi dari Distribusi Binomial
Mean dan Variansi dari Distribusi Binomial
Rata-rata 2 konsumen menyatakan biasa saja : 5 . 0,25 = 1,25 kali
Variansi 2 konsumen menyatakan biasa saja : 5 . 0,25 . 0,75 = 0,94 kali
Distribusi Binomial
Kerjakan.
Sejumlah partai besar suatu produk yang masuk disebuah pabrik
diteliti cacatnya dengan suatu skema pengambilan sampel. Sepuluh
barang diperiksa dan partai barang akan ditolak jika 2 unit barang
atau lebih ditemukan cacat. Jika suatu partai berisi tepat 5% barang
yang cacat, berapakah peluang bahwa partai barang tersebut
diterima?
Distribusi Binomial
jawab.
Partai barang yang diterima, bila X = 0 atau X = 1
P(X;n) = P(0;10) + P(1;10)
Distribusi Poisson
• Dikembangkan oleh Matematikawan Prancis Simeon Denis Poisson
• Distribusi peluang diskret yang menyatakan peluang jumlah peristiwa
yang terjadi pada periode waktu tertentu.
• Alternatif distribusi binomial untuk kasus dengan n sangat besar
(n>20) atau p sangat kecil (p<0,1)
Peluang Kejadian Distribusi Poisson
e = Bilangan Napier atau bilangan euler ( e = 2,71828)
Peluang Kejadian Distribusi Poisson
Peluang Kejadian Distribusi Poisson
Contoh :
Kebangkrutan bank di Negara X yang disebabkan oleh
kesulitan keuangan terjadi rata-rata 4 bank setiap tahun.
Berapa peluang paling sedikit 3 buah bank bangkrut pada
suatu tahun tertentu?
Peluang Kejadian Distribusi Poisson
Penyelesaian :
X = kejadian bank yang bangkrut , µ= 4
Paling sedikit 3 buah bank bangkrut, berarti X ≥ 3
Peluang Kejadian Distribusi Poisson
Jadi peluang bahwa paling sedikit 3 buah bank bangkrut pada suatu
tahun tertentu adalah 0, 762 atau 76,2 %
Peluang Kejadian Distribusi Poisson
Contoh :
Suatu mesin cetak diturunkan untuk diperbaiki rata-rata 2
kali dalam setahun. Penurunan mesin lebih dari 3 kali
menyebabkan rencana produksi tak tercapai
a. Berapa peluang rencana produksi akan tercapai?
b. Berapa peluang rencana produksi tak tercapai?
Peluang Kejadian Distribusi Poisson
Penyelesaian :
X = kejadian mesin diturunkan , µ= 2
a. Berapa peluang rencana produksi akan tercapai?
Mesin diturunkan maksimum 3 kali , berarti x ≤ 3
Peluang Kejadian Distribusi Poisson
Penyelesaian :
b. Berapa peluang rencana produksi tak tercapai?
Mesin diturunkan lebih dari 3 kali , berarti x > 3
Latihan
Kerjakan.
Dua ratus penumpang telah memesan tiket untuk sebuah penerbangan
luar negeri. Jika peluang penumpang yang telah mempunyai tiket tidak
akan datang adalah 0.01 maka berapakah peluang ada 3 orang
yang tidak datang dalam jangka waktu tertentu?
n = 200, P = 0.01, X = 3, μ = n . p = 200 . 0.01 = 2
P(x=3)=...?
Latihan
Menghitung Distribusi Binomial dengan Ms. Excel
Menghitung Distribusi Binomial dengan Ms. Excel
“False” untuk P(X=x), “True” jika P(X<=x)
Menghitung Distribusi Poisson dengan Ms. Excel
Menghitung Distribusi Poisson dengan Ms. Excel
“False” untuk P(X=x), “True” jika P(X<=x)

similar documents