At the End of the Nuclear Map

Report
2nd Conference “Advance in Radioactive Isotope Science
At the End of the Nuclear Map
Yuri Oganessian
Flerov Laboratory of Nuclear Reactions,
Joint Institute for Nuclear Research,
141980 Dubna, Moscow region, Russia
ARIS 2014 June 1-6, 2014 in Tokyo, Japan
Chart of nuclides
Macroscopic theory (Liquid Drop Model)
about 50 years ago…
proton number
120
TSF = 2·10-7 y
110
102No
Nuclear instability
against spontaneous
fission
/ Tα ≈ 2 s
100
Th
90
Bi
92U
/ Tα = 4.5·109 y
TSF = 1016 y
80
82Pb
/ stable
70
110
120
130
140
150
160
170
180
neutron number
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
190
New lands
New lands
-5
0
Proton number
120
Macro-microscopic theory
5
1µsabout 40
1s years
1h ago…
1y
10
15
1My
Island of
Stability
Shoal
shoal
110
Peninsula
peninsula
100
90
A. Sobiczewski et al (2003)
LogT1/2 s
Continent
continent
Sea of Instability
80
70
100
110
120
130
140
150
160
Neutron number
170
180
190
Reactions of Synthesis
A. Sobiczewski, K. Pomorski, PPNP 58, 292, 2007
120
LDM + Shell Corrections
SHE
protons →
(10y) 6 elem. 1989 - 2010
110
Cold fusion
-7
48Ca
Act.
Act. ++ 48
Ca
(38y) 6 elem. 1974 - 2012
-5
-6
Hot
fusion
-4
-5 - 1975 (20y) 6 elem.
1955
100
-6
-3
-4 capture
Neutron
-3 1940 - 1955 (15y) 8 elem.
-2
-4
90
U
Th
Historical background:
-2
After discovery of nuclear fission 75 years ago - 26 new chemical elements
heavier than uranium was synthesized
Pb
Pb
Bi-14
neutrons →
80
120
130
140
150
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
160
170
180
190
P. Moller et al., PR., C79, 064304 (2009)
hot fusion
SHE
120
48Ca-induced reactions
Ex = 35 - 45 MeV
х =3–4
Proton number Z
118
117
116
114
115
113
112
113
112
110
110
106 108
104
1
cold fusion
2
Fission barrier
heights
MeV
Bf in
(MeV)
3
4
5
6
7
8
100
Ex = 12 - 15 MeV
х =1
Total EVRs cross sections (cm2)
208Pb, 209Bi + 50Ti,……70Zn
10-32
160
170
Rf
180
Neutron number N
Sg
10-34
Hs
Hs
Fl
Cn
Fl
Ds
10-36
Cn
10-38
48Ca
Lv
Island
113
155
160
165
170
175
185
180
CN neutron number
190
Ex=12-15 MeV
104
102
100
SHE
Z1·Z2/(A11/3+A21/3)
10-2
300
250
200
150
100
Limitation of fusion
105
110 115 120
Atomic number
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
Total EVR’s cross sections (pb)
Cold fusion
Bn – Bf (MeV)
Total EVR’s cross sections (pb)
106
106
Hot fusion
104
Ex≈ 40 MeV
102
SHE
100
10-2
0.5
0.0
-0.5
-1.0
-1.5
-2.0
100
CN survival ~ exp(Bn-Bf)
105
K. Siwek-Wilczy´nska et al.,
PR C86, 014611 (2012)
110 115 120
Atomic number
1998 - 2007
Experimental technique
position sensitive
strip detectors
Dubna Gas-Filled Recoil Separator
“veto” detectors
TOF-detectors
Transmission for:
EVR 35-40%
side
detectors
SH
recoil
target-like 10-4-10-7
projectile-like 10-15-10-17
recoils
48
Registration efficiency:
for α-particles 87%
for SF
single fragment 100%
two fragments ≈ 40%
Ca-ions
gas-filled
chamber
beam
48Ca
rotating
entrance
window
target
0
22.5
detector
station
249Bk
focal plane
detector array
separator
target
9.96 MeV
22.04 mm
48Ca
a
1
10.91 MeV
53.01 ms 289
22.16 mm 115
a2
281
117
ER=7–15 MeV
y=y0
10.7–11.4 MeV
≤ 132 ms
Δy=y1-y0 ≤ 2.2 mm
10.25 MeV
0.51s
22.20 mm
285
a3
293
113
9.79 MeV
0.24 s
22.09 mm
111
SF
189.4 MeV
31.66 s
22.01 mm
the beam was switched off
Yu. Oganessian 2010
low-background detection scheme
Spectra of fission-like signals
117
beam-on
1680 h
211Po
α1
beam-on
1680 h
214Po
213Po
(α+e-)
212Po
(α+e-)
113 115
α2
α3
SF
111
212Po
beam-off
80 h
252,254Cf
80 h
beam-off
10-3/s
per strip / position
2·10-6/s
7·10-5/s
1.5·10-7/s
Expected numbers of random sequences ≤ 5·10-10
Yuri Oganessian / Seminar at Tokyo Institute of Technology, June 04, 2014 , Tokyo, Japan
Yu. Oganessian 2010
Spectra of the α-like signals
Decay Properties of SHN
Even-Z Nuclei
3n 245Cm + 48Ca
2n
4n
3n
238U
+ 48Ca
294
118 3n
112
110
108
106
104
2n
244Pu
249Cf
+
4n
48Ca
11.65(6) MeV 5n
290 0.69 +0.64 ms 291
-0.22
116
114
+ 48Ca
3n
4n
Z=118
242Pu
Lv
10.19(6) MeV
10.02(6) MeV
282 012 +0.04 s
283 0.48 +0.16 s
-0.02
-0.9
Cn
N=26
9.54(6) MeV
279 9.33(6) MeV
Ds
3.8 +1.2
-0.7 s
275 9.70(6) MeV
Hs 0.20 +0.05
-0.04 s
9.30(6) MeV
271
+0.22
Sg 0.19 -0.07 s
8.54(8) MeV
267 1.9 +2.4 min
-0.6
Rf
1.3+2.3 h
3
26
3n
3n
293
Lv
Fl
0.82 +0.33
-0.18 ms
+ 48Ca
292
10.85(7) MeV
10.74(7) MeV
286 8.3 +3.5 ms
287 18 +22 ms
-1.9
-6
Cn
244Pu
4n
Lv
Fl
+ 48Ca
Lv
10.66(7) MeV
288
Fl
+16
-6
10.54(6) MeV
289
Fl
+57
-20
9.94(7) MeV
9.82(5) MeV
284 0.80 +0.27 s
285 9.48(8) MeV
-0.16
Cn
Cn 2.6 +1.2
-0.7 s
+31
9.15(5) MeV
19 97 -19 ms
281
+13
Ds 29 -7 s
+5
11
10 -3 s
Decay chains
Even Z Nuclei
1999 - 2005
Energy spectra of alpha particles
249Cf + 48Ca
Counts / 20 keV
2
242Pu+ 48Ca
294118
244Pu+ 48Ca
0
2
290Lv
286Fl
3
0
9.5
10.5
Energy (MeV)
1
0
287Fl
2
0
288Fl
3
0
0
8.5
293Lv
1
0
0
2
292Lv
291Lv
1
11.5
283Cn
3
289Fl
0
8.5
0
9.5
10.5
Energy (MeV)
11.5
285Cn
2
0
279Ds
1
0
275Hs
1
0
271Sg
1
8.5
9.5
10.5
11.5
Energy (MeV)
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
8.5 9.0 9.5 10.0 10.5 11.0 11.5
Energy (MeV)
Alpha - decay
Alpha decay energy (MeV)
12.0
Theory:
Theory I. Muntian, Z. Patyk, and A. Sobiczewski
Z-even
118
Phys. At. Nucl. 66, (2003)
11.0
116
10.0
114
108
112
9.0
106
110
Exp.
Exp:
8.0
7.0
260
Z-even
Z-even
270
280
290
Atomic mass number
300
Spontaneous fission
even-even isotopes
16
N=152
14
Th.
R. Smolańczuk, PR. C 56 (1997) 812
N=184
Log TSF (s)
12
10
Z=98
SHN
N=162
8
6
Z=112
100
4
2
102
0
108
114
104
-2
112
106
-4
114 SF critical
zone
-6
-8
145
150
155
160
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
165
170 175 180
Neutron number
Cf-No
Rf
Sg
Hs
Cn
Fl
185
130
Congress of IUPAC-2011
Fl
a
Lv
SHE
200
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
210
Odd-Z Nuclei
February, 2012
GARIS
DGFRS
243
209
70
Bi + Zn
237
48
113
Rg
Mt
10.65-11.31 MeV
12 +15
-4 ms
10.03-10.26 MeV
+0.57
Bh 0.48 -0.17 s
9.08-9.77 MeV
262 2.1 +2.5 s
-0.7
266
Db
39 +46
-14 s
[2]
293
294
117
117
288
113
113
289
113
113
10.12-10.23 MeV 9.10-10.11 MeV
9.47-10.18 MeV 9.61-9.75 MeV
10.63(8) MeV
278 73 +134 ms
279 75 +136 ms
280 0.91 +0.17 s
281 4.2 +1.4 s
282 13 +12 s
-29
-30
-0.8
-4
-0.13
Rg
11.52-11.82 MeV
274 1.4 +1.6 ms
-0.5
270
48
Am + Ca
287
282
113
Bk +48 Ca
10.60-11.20 MeV 10.81-10.97 MeV
+8
290 50 +60 ms
-18
115
115
115 22 -4 ms
115
10.61(5) MeV
10.29-10.58 MeV
10.15-10.54 MeV 9.78-10.28 MeV
+120
+280
283 37 +44 ms
284 164 +30 ms
285
286
-80
-90
-13
-21
Np + Ca
278
249
Rg
Rg
Rg
Rg
10.69(8) MeV
10.38(16) MeV
9.09-9.92 MeV
9.28(5) MeV
9.01(5) MeV
+7.5
+6
+0.8
+55
+0.17
275
276
278
277
17 -3 s
Mt 4.2 -1.7 ms
Mt 0.09 -0.04 s
Mt 4.6 -0.7 s
Mt 59 -19 s
Mt
+9
10.0(1.1) MeV
10.33(1) MeV
9.17-10.01 MeV
9.38-9.55 MeV
5 -2 ms
+0.12
+5
+6.2
270 9.76(10) MeV 271 20
272
274
-7 ms
Bh 0.44 +0.81 s Bh
Bh 0.45 -0.09 s / 6 -3 s
Bh 5.2 -1.8 s
-0.17
2n[4]
9.28(7) MeV
8.55-9.15 MeV
8.76(5) MeV
8.93(8) MeV
266
267 1.5+2.8 s
268 10.9 +2.0 s
270
+292
54 -19 s
4n[10]
-1.5
-0.6
Db 61 -28 s
Db
Db
Db
274
22 +105
-10 min
[2]
+1.6
1.3 -0.5 h
[1]
26 +4
-3 h
[31]
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
17 +15
-6 h
[3]
June, 2013
GARIS
DGFRS + TASCA
243
209
70
Bi + Zn
237
48
113
Rg
Mt
10.65-11.31 MeV
12 +15
-4 ms
10.03-10.26 MeV
+0.57
Bh 0.48 -0.17 s
9.08-9.77 MeV
262 2.1 +2.5 s
-0.7
266
Db
39 +46
-14 s
[3]
K. Morita
this session
293
294
117
117
288
113
113
289
113
113
10.12-10.23 MeV 9.10-10.11 MeV
9.47-10.18 MeV 9.61-9.75 MeV
10.63(8) MeV
278 73 +134 ms
279 75 +136 ms
280 0.91 +0.17 s
281 4.2 +1.4 s
282 13 +12 s
-29
-30
-0.8
-4
-0.13
Rg
11.52-11.82 MeV
274 1.4 +1.6 ms
-0.5
270
48
Am + Ca
287
282
113
Bk +48 Ca
10.60-11.20 MeV 10.81-10.97 MeV
+8
290 50 +60 ms
-18
115
115
115 22 -4 ms
115
10.61(5) MeV
10.29-10.58 MeV
10.15-10.54 MeV 9.78-10.28 MeV
+120
+280
283 37 +44 ms
284 164 +30 ms
285
286
-80
-90
-13
-21
Np + Ca
278
249
Rg
Rg
Rg
Rg
10.69(8) MeV
10.38(16) MeV
9.09-9.92 MeV
9.28(5) MeV
9.01(5) MeV
275 0.09 +0.17 s
276 4.6 +0.8 s
278 59 +55 s
277 17 +6 s
4.2 +7.5
ms
-1.7
-3
-0.7
-19
-0.04
Mt
Mt
Mt
Mt
Mt
+9
10.0(1.1) MeV
10.33(1) MeV
9.17-10.01 MeV
9.38-9.55 MeV
5 -2 ms
+0.12
+5
270 9.76(10) MeV 271 20
272
274 5.2 +6.2 s
ms
0.45
s
/
6
s
-7
-0.09
-3
-1.8
Bh 0.44 +0.81 s Bh
Bh
Bh
-0.17
2n[4]
9.28(7) MeV
8.55-9.15 MeV
8.76(5) MeV
8.93(8) MeV
266
267 1.5+2.8 s
268 10.9 +2.0 s
270 54
+292
4n[16]
-19 s
-1.5
-0.6
Db 61 -28 s
Db
Db
Db
274
22 +105
-10 min
[2]
+1.6
1.3 -0.5 h
[3]
26 +4
-3 h
[73]
17 +15
-6 h
[6]
Odd Z Nuclei
2003 - 2012
An excellent case for
spectroscopic studies of the SHN
in <α-γ> coincidence experiments
D. Rudolf at this session
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
Confirmations of DGFRS data
A/Z
2007 - 2014
Setup
Laboratory
Publications
283112
SHIP
GSI Darmstadt
Eur. Phys. J. A32, 251 (2007)
283112
COLD
PSI-FLNR (JINR)
NATURE 447, 72 (2007)
286, 287114
BGS
LBNL (Berkeley)
P.R. Lett. 103, 132502 (2009)
288, 289114
TASCA
GSI – Mainz
P.R. Lett. 104, 252701 (2010)
292, 293116
SHIP
GSI Darmstadt
287, 288115
TASCA
GSI – Mainz
P.R. Lett. 111, 112502 (2013)
293, 294117
TASCA
GSI – Mainz
P.R. Lett. 112, 172501 (2014)
292, 293116
GARIS
RIKEN Tokyo
Accelerator Progress Rep. (2013)
Eur. Phys. J. A48, 62 (2012)
Island of over 50 nuclei
produced in Act.+48Ca
reactions
~ 0.02 pb
~10 pb
Nuclear Mainland
29 s
277Hs
271Hs
3 ms
4s
2s
267Sg
2min
1.1h
~1 h
Fission is terminating
the decay chains at the Island
1.1h
266Lr
11 h
~1 pb
How to build a bridge between heavy and super-heavy nuclei
118
117
116
115
114
113
112
110
108
Z=106
Mainland
112
Island
protons
How to build a bridge between heavy and super-heavy nuclei
K. Rykaczewski tomorrow
239Pu(48Ca,3n)
One decay was
detected only
tSF = 0.5 ms
σ ≈ 0.25 pb
116
115
Island
284
114 114
113
233U(48Ca,3n)
No decays was observed
4n
278
112
244Pu+48Ca
111
Mainland
110
109
118
tSF > 5 s
σ ≈ 6-7 pb
108
107
106
105
104
neutrons
The discovery of SHE raised a questions:
Where is the end of
the nuclear landscape?
120
Are SH atoms and nuclei
different from lighter species?
SHN
110
proton number
HN
100
105
β-
proton
drip line
waiting
point
90
Pb
80
β-
Uranium
82
A=278
184
waiting
point
70
…and what are the shapes
and density of nuclei
at the mass limit?
β-
Are SHN produced
in stellar explosions?
neutron
drip line
60
A=195
50
50
126
100
120
140
160
180
neutron number
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
200
50Ti,54Cr,58Fe
124
STRATEGY
122
σ≤0.12pb
120
σ≤0.07pb
209Bi with
Z=118
208 Pb and
Fusion
ofof208
Fusion
Pb and 209 Bi-target
nuclei+ 48Ca
Act
proton number
number
proton
118
with projectiles
A>50
projectiles
A > 50
116
Search for new
elements
Lv
0.3 pb
114
σ≈10 pb
Fl
s
Cn
112
low intensity of RIB
Rg
Ds
Mt
110
108
5.0
ms
Expanded studies
Hs
Bh
Fusion reactions of
Actinide-target
nucleiof Actinide-target
Fusion
reaction
48
with Ca projectiles
48
7.4
106
nuclei with
104
150
154 156 158 160
152
Ca projectiles
164 166 168 170 172 174 176 178 180 182
162
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
neutron number
Neutron
number
1 86
184
Obviously...
the field of the research is limited
by the production of super heavy nuclei
Everything we know about SH-nuclei produced
in 48Ca-induced reactions:
-
Reaction of synthesis (CN and neutron evaporation)
Production cross sections (excitation functions)
Competing channels (background)
Decay …allow
chains (principal
us to decay
thinkmodes)
about a SHE-Factory
Half-lives
of the SHN (andrate
its α-decay
with production
aboutproducts)
100 times higher
and
than
what
we
currently
have
All achievements obtained in last decade:
- in experimental technique,
- in accelerator and plasma physics,
- in detectors,
- in target technologies, etc.
Factory of SHE
SHE-Factory
Isotope production:
Cm-248
Bk-249
Cf-251
To be increased
10 times
New accelerator
High beam
dose of : Ca-48
Ti-50
Factor 10-20
Ni-64
Depend of
target durability
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
SC- separator
& sophisticated
detectors
Factor 3-5
is closely linked
to the intellect
new mode gave
by now factor: 6.5
Z
96
95
94
Cm
Am
Pu
98
Yu. Oganessian 2010
High Flux Isotope
Reactor at Oak- Ridge
Cf
97
Bk
Cf249
Cf250
α, (n,f)
α
α, (n,f)
249
Bk250
Bk
Cm242
Cm243
Cm244
Cm245
Cm246
Cm247
α
α, (n,f)
α
α, (n,f)
α
α, (n,f)
Am241
Am242
Am243
Am244
Am245
Am246
α
β-,EC,(n,f)
α
β-
β-
β-
Pu240
Pu241
Pu242
Pu243
Pu244
Pu245
Pu246
α
β-, (n,f)
α
β-
α
β-
β-
start
146
148
N
150
Cf251
251
251
Cf
Cf252
α, SF
β-
Cm248
248
start
α, SF
Cm
152
Isolation from the
“Old 252Cf sources”
& mass separation
HEAVIEST NUCLEI
293
0.42/0.22/0.36
48
,
Ca
+
249
Cf
250
Cf
285
281
277
Ds
273
Hs
265
Rf
275
Hs
279
Ds
Lv
α
Cf
Cn
Sg
289
251
Cf - mixed target
made in ORNL
269
α
3n and 4n
evaporation
channels
282
Cn
286
287
Fl
Fl
Fl
283
284
285
Cn
Cn
290
Lv
288
Fl
294
295
296
118 118 118 118
α
291
292
Lv
Lv
α
293
Lv
289
Fl
Cn
281
new:
α
Ds
277
Hs
271
Sg
Search for new isotopes of Lv and element 118
267
Rf
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
New accelerator and new Lab. at Dubna
Production
Increase a beam dose
today: ~ 5·1019/y with Factory: 1.0·1021/y
factor: 20
Beam intensity
&
Beam time
New cyclotron
New accelerator
10-20
pµA
10-20
pµA
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
Factory
~ 7000 h/year
Scheme of the production and delivery SH-atoms to the detectors
Mass analyzer
Actinides
EVR’s transport
beam
interface
analyzer
SHE
target
station
48Ca
Large acceptance
Present
SC-gas filled recoil
separator
Gas
catcher
Focal
plane Z, A
detector array
acceleration
if necessary
factor: 5-10
Detectors
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan
Dubna, May 22, 2014
Collaboration
Thank you
FLNR, JINR (Dubna)
ORNL (Oak-Ridge, USA)
LLNL (Livermore, USA)
ANL (Argonne, USA)
GSI (Darmstadt, Germany)
TAMU Cyclotron Institute (Texas, USA)
GANIL (Caen, France)
RIAR (Dimitrovgrad, Russia)
Vanderbilt University (Nashville, USA)
Yuri Oganessian. ARIS 2014, June 5, 2014 in Tokyo, Japan

similar documents