Volume Data Analysis and Visualization

Report
Volume Data Analysis and
Visualization
Stefan Bruckner
Department of Informatics
University of Bergen
A Data-Driven World …
MEDICINE
BIOLOGY
ENGINEERING
VISUAL KNOWLEDGE DISCOVERY
make sense of mountains of data
EARTH SCIENCES
Mission Statement
Enable visual knowledge discovery in
large spatial data collections
1
Effective Navigation in
Spatial Data Collections
2
Real-Time Visualization of
Large Datasets
ALGORITHMIC
SOLUTIONS
3
Distributed Collaboration
and Communication
TECHNICAL
FRAMEWORK
GENERAL
METHODOLOGY
Selected Success Stories
VOLUME DATA ANALYSIS
AND VISUALIZATION
Volume Analysis
• Identification of features in volumetric data, e.g.
seismic volumes, medical imaging data, etc. [1-5]
– Find regions in parameter space which correspond to
distinct spatial structures
delineating blood vessels in angiography
removing artifacts in industrial CT
Volume Exploration
• Finding of patterns in
large spatial data
collections [8-10]
– Interactive tools for visual
exploration, navigation,
and analysis
– Categorization of the
output space using spatial
similarity measures
– Applications: fluid
simulation, neurobiology,
medicine, etc.
Smart Interaction
• AngioVis: advanced visualization for improved diagnosis of
vascular decease [11-13]
– Next-generation radiology workstation, in daily clinical use at
the Vienna General Hospital
• LiveSync: synchronized interaction with 2D and 3D images
in medical workstations [14-17]
– Integrated into AFGA HealthCare software, several granted
patents
Illustrative Visualization
• Interactive presentation of complex 3D datasets
in an easily-understandable way based on
illustration techniques [18-25]
– GPU-based methods for generating cutaway views,
exploded views, stylized shading, etc.
– VolumeShop software framework: rapid-prototyping
toolkit for volume visualization & remote rendering
Real-Time Rendering
• Real-time realistic volume
visualization from live 4D ultrasound
data [26-28]
– High-quality rendering with at a fraction
of the cost of previous methods
– Research and technology transfer project
with GE Healthcare, available on Voluson
US scanners
References (1)
[1] M. Haidacher, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Information-based transfer functions for multimodal visualization,” in
Proceedings of Visual Computing for Biomedicine 2008, pp. 101–108, 2008.
[2] M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Volume visualization based on statistical transfer-function spaces,” in
Proceedings of IEEE Pacific Visualization 2010, pp. 17–24, 2010.
[3] D. Patel, S. Bruckner, I. Viola, and M. E. Gröller, “Seismic volume visualization for horizon extraction,” in Proceedings of IEEE Pacific
Visualization 2010, pp. 73–80, 2010.
[4] S. Bruckner and T. Möller, “Isosurface similarity maps,” Computer Graphics Forum, vol. 29, no. 3, pp. 773–782, 2010. EUROVIS 2010 BEST
PAPER AWARD.
[5] M. Haidacher, S. Bruckner, and M. E. Gröller, “Volume analysis using multimodal surface similarity,” IEEE Transactions on Visualization and
Computer Graphics, vol. 17, no. 6, pp. 1969–1978, 2011.
[6] S. Bruckner, V. Šoltészová, M. Gröller, J. Hladuvka, K. Bühler, J. Y. Yu, and B. J. Dickson, “BrainGazer – Visual queries for neurobiology
research,” IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6, pp. 1497–1504, 2009.
[7] S. Bruckner and M. E. Gröller, “Instant volume visualization using maximum intensity difference accumulation,” Computer Graphics Forum,
vol. 28, no. 3, pp. 775–782, 2009.
[8] S. Bruckner and T. Möller, “Result-driven exploration of simulation parameter spaces for visual effects design,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, no. 6, pp. 1467–1475, 2010.
[9] P. Mindek, S. Bruckner, M. E. Gröller, “Contextual Snapshots: Enriched Visualization with Interactive Spatial Annotations,” in Proceedings
of the Spring Conference on Computer Graphics 2013. SCCG 2013 BEST PAPER AWARD.
[10] J. Schmidt, M. E. Gröller, and S. Bruckner, “VAICo: Visual Analysis for Image Comparison,“ IEEE Transactions on Visualization and
Computer Graphics, vol. 19, no. 6, pp. 2090-2099, 2013.
[11] G. Mistelbauer, H. Bouzari, R. Schernthaner, I. Baclija, A. Köchl, S. Bruckner, M. Sramek, M. E. Gröller, “Smart Super Views – A
Knowledge-Assisted Interface for Medical Visualization,” in Proceedings of IEEE VAST 2012, pp. 163–172, 2012.
[12] G. Mistelbauer, A. Morar, A. Varchola, R. Schernthaner, I. Baclija, A. Köchl, A. Kanitsar, S. Bruckner, M. E. Gröller, “Vessel Visualization
using Curvicircular Feature Aggregation,“ Computer Graphics Forum, vol. 32, no. 3, pp. 231–240, 2013.
[13] T. Auzinger, G. Mistelbauer, I. Baclija, R. Schernthaner, A. Köchl, M. Wimmer, M. E. Gröller, and S. Bruckner, “Vessel Visualization using
Curved Surface Reformation,“ IEEE Transactions on Visualization and Computer Graphics, vol. 19, no. 6, pp. 2858–2867, 2013.
[14] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “LiveSync: Deformed viewing spheres for knowledge-based navigation,” IEEE
Transactions on Visualization and Computer Graphics, vol. 13, no. 6, pp. 1544–1551, 2007.
References (2)
[15] S. Bruckner, P. Kohlmann, A. Kanitsar, and M. E. Gröller, “Integrating volume visualization techniques into medical applications,” in
Proceedings of the International Symposium on Biomedical Imaging 2008, pp. 820–823, 2008.
[16] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “LiveSync++: Enhancements of an interaction metaphor,” in Proceedings of
Graphics Interface 2008, pp. 81–88, 2008.
[17] P. Kohlmann, S. Bruckner, A. Kanitsar, and M. E. Gröller, “Contextual picking of volumetric structures,” in Proceedings of the IEEE Pacific
Visualization 2009, pp. 185–192, 2009.
[18] S. Bruckner and M. E. Gröller, “VolumeShop: An interactive system for direct volume illustration,” in Proceedings of IEEE Visualization
2005, pp. 671–678, 2005.
[19] S. Bruckner, S. Grimm, A. Kanitsar, and M. E. Gröller, “Illustrative context-preserving exploration of volume data,” IEEE Transactions on
Visualization and Computer Graphics, vol. 12, no. 6, pp. 1559–1569, 2006.
[20] S. Bruckner and M. E. Gröller, “Exploded views for volume data,” IEEE Transactions on Visualization and Computer Graphics, vol. 12, no.
5, pp. 1077–1084, 2006.
[21] S. Bruckner and M. E. Gröller, “Style transfer functions for illustrative volume rendering,” Computer Graphics Forum, vol. 26, no. 3, pp.
715–724, 2007. EUROGRAPHICS 2007 3RD BEST PAPER AWARD.
[22] P. Rautek, S. Bruckner, and M. E. Gröller, “Semantic layers for illustrative volume rendering,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1336–1343, 2007.
[23] S. Bruckner and M. E. Gröller, “Enhancing depth-perception with flexible volumetric halos,” IEEE Transactions on Visualization and
Computer Graphics, vol. 13, no. 6, pp. 1344–1351, 2007.
[24] P. Rautek, S. Bruckner, and M. E. Gröller, “Interaction-dependent semantics for illustrative volume rendering,” Computer Graphics
Forum, vol. 27, no. 3, pp. 847–854, 2008.
[25] S. Bruckner, P. Rautek, I. Viola, M. Roberts, M. C. Sousa, and M. E. Gröller, “Hybrid visibility compositing and masking for illustrative
rendering,” Computers & Graphics, vol. 34, no. 4, pp. 361–369, 2010.
[26] V. Šoltészová, D. Patel, S. Bruckner, and I. Viola, “A multidirectional occlusion shading model for direct volume rendering,” Computer
Graphics Forum, vol. 29, no. 3, pp. 883–891, 2010.
[27] T. Ropinski, S. Diepenbrock, S. Bruckner, K. Hinrichs, and M. E. Gröller, “Unified Boundary-Aware Texturing for Interactive Volume
Rendering,” IEEE Transactions on Visualization and Computer Graphics, vol. 18, no. 11, pp. 1942–1955, 2012.
[28] D. Patel, V. Šoltészová, J. M. Nordbotten, and S. Bruckner, “Instant Convolution Shadows for Volumetric Detail Mapping,“ ACM
Transactions on Graphics, vol. 32, no. 5, pp. 154:1–154:18, 2013.

similar documents