LO - Technion moodle

Report
Lecture VII
Introduction to Fiber Optic
Communication
Ver 2
COHERENT DETECTION
•
Moshe Nazarathy All Rights Reserved
Moshe Nazarathy Copyright
1
Coherent detection SNR limits (analog)
I&D IDEAL
PHOTON COUNTER
Analog coherent
Homodyne transmission:
Instantaneous SNR eval
(t-dependence dropped)
id 
  E LO
1
2
 Ed
2
2
  Ed
2
LO
2
  E r  E LO   E r
 2  R e E r E LO e
id  i L O  2
iLO
j (  E r   E LO )
2
  E LO
i r cos   E r   E L O
  E LO
2
 2  Er

set  E r   E L O ( perfect phase trac k ing )
SN R coh  q coh 
sig am p coh
 LO

2
i LO
ir
2 e iLO W

2
2 ir / e
ir
 2  R e E r E LO
*
 E LO cos   E r   E LO 
iLO
iLO   E LO
ir   E r
2
2
W
SNR (sig. pwr / shot-noise var)
at the output of a W Hz
ir
ir / e
sig am p D D
LPF passing the signal
SN R D D  q D D 



2W
So, what’s the Big Deal?
2 e ir W
just 2  better
but…the coherent performance
<<to add “analog” SNR
(a factor of 4
for OADD and heterodyne is practically achievable, DD performance is not !
SYN/ASYN>>
Coh. Det. overcomes receiver thermal noise <<shot-noise in SNR)
Moshe Nazarathy Copyright
2
Coherent detection – some advantages
Some key advantages of coherent optical
communications:
• Direct access to the received electric field, linearly
accessible by optically coherent downconversion of
the received bandpass optical field.
• Availability of the field enables electronic (digital)
mitigation of channel impairments (CD, PMD, NL)
• Improved sensitivity with the LO power acting as a
gain, in effect boosting the signal prior to electronic
detection (overcome thermal receiver noise).
• Improved frequency selectivity, allowing to use
electrical filters in the RF domain to remove the
noise around the optical carrier and sharply
suppress adjacent optical channels in a DWDM
system.
Moshe Nazarathy Copyright
3
Coherent detection – some disadvantages
• Needs more coherent lasers – lower
linewidth
• More complex receiver, requiring to
mitigate the phase wander of the optical
source and the fluctuations of optical
polarization
• Disadvantages mitigated by modern
DSP
Moshe Nazarathy Copyright
4
The Coherent Receiver Front-End:
A linear Opto-electronic
Downconverter
Moshe Nazarathy Copyright
5
Building block for coherent and differential detection:
The Balanced Optical Mixer
Assume signal and LO have same freq. - homodyne
Initially address a single polarization
(scalar treatment)
r ( t )  R ( t )  -port
r (t )
ik  R e r ( t ) R ( t )
*
coupler
R (t )
r (t )  R (t )
Proof:
ik 

2
2

2
2
r (t )  R (t ) 
ik  Im r ( t ) R ( t )
*
90
Proof: Substitute
Moshe Nazarathy Copyright
(*)
 -port
r (t )  R (t ) 
r (t )
R (t )
“mixing product”
R ( t )  j R ( t ) in (*)
6
A pair of BALANCED optical mixers in quadrature
- called 9 0 optical hybrid
implements the complex MIXING PRODUCT
r (t )
*
R e r (t ) R (t )
R (t )
mixing product
*
r (t ) R (t )
r (t )
*
R (t )
Moshe Nazarathy Copyright
90
Im r ( t ) R ( t )
7
optical hybrid
Coherent Homodyne Receiver Front-End
(e.g. for QPSK)
90
R e r (t ) R
 r (t )e
j r ( t )
 R r ( t ) cos   r ( t )   R 
r (t )
R
 Re
Local
Oscillator (LO)
*
r (t ) R
j R
*
 R r ( t ) sin   r ( t )   R 
Im r ( t ) R
90
r (t ) R
*
 r (t ) R e
j  r ( t )   R 
 r (t )e
*
j r ( t )
Phase
Info
8
Let  R  0 i.e. assume the LO is aligned with the signal phase reference
(real axis of the signal constellation)
Moshe Nazarathy Copyright
8
Polarization Diversity 9 0 Hybrid
E s t 
Signal
y
x
x
LO
yxI
i ,1 t 
Single-Polarization
Downconverter I
yxQ
q ,1 t 
Single-Polarization
yyI
i , 2 t 
Downconverter II
PBS y
yyQ
q , 2 t 
Polarization
Beam Splitter
Opto-Electronic DownConverter
E R ( t )  E LO
E R (t )
E LO
coupler
+
_
iI
E R ( t )  E LO
90
Moshe Nazarathy Copyright
_
E R ( t )  jE LO
+
E R ( t )  jE LO
iQ
Single-Polarization Down-Converter (Optical Demodulator)
9
Putting it all together:
Coherent Receiver block diagram
(homodyne or intradyne)
Intradyne:
Sig. & LO
have nearly
the same freq.
ADC
ADC
DSP
ADC
ADC
Moshe Nazarathy Copyright
10
Si PHOTONIC
INTEGRATED
CIRCUIT (PIC)
OL
Y-P
OL
X-P
TUNABLE
LASER
g N
de TIO
90 RIZA OR
LA TAT
PO RO
(90 deg
ROTATED)
Y-POL
COHFE
90
OPTICAL
Rx
FRONT-ENDS
DS Rx
Coherent
Receiver
with
Integrated
Optical
Front-end
PBS
X-P
OL
SOA
X-POL
COHFE
90
°
Q
I
°
Q
I
ADCs
ADCs
X-POL COH
FRONT-END
DSP
Y-POL COH
FRONT-END
DSP
DS RX - DSP
DATA OUT
Moshe Nazarathy Copyright
11
Homo/Hetero-dyne detection with balanced Optical
Mixer
SIGNAL & LO at same frequency (homodyne)
r (t )  L
r (t )
“mixing product”
 -port
ik  R e r ( t ) L
*
coupler
L
r (t )  L
ik  r ( t ) e
j c t
 Le
 -port
j L t
2
 r (t )e
j c t
 Le
Now let SIGNAL & LO be at different frequencies (heterodyne)
r (t )e
Le
j L t
j c t
ik  R e  r ( t ) e
j L t
j c t
2
  Le
j L t

*
c  L
i k  Re r ( t ) L e
*
j IF t
 r ( t ) L cos   IF t   r ( t )   L 
Moshe Nazarathy Copyright
12
Balanced coherent receiver
with electrical quadrature demodulation
and electrical/optical PLL
r ( t ) L cos   IF t   r ( t )   L 
r ( t ) L c os   r ( t )   L 
cos  IF t
 sin  IF t
r ( t ) L sin   r ( t )   L 
“Optical Voltage-Tuned-Oscillator”
Tunable laser
VTO
FIXED
Optical PLL
Actually
decision-directed
PLL
Note: Single-lane scalar version
Assume that a polarization controller rotated the input polarization signal to be
parallel to that of the LO. Alternatively, this is one of the two polarization lanes
of a polarization diversity scheme
Moshe Nazarathy Copyright
13
Putting it all together
“Classic” coherent heterodyne receiver
Each polarization lane feeds an electrically coherent
receiver extracting the IQ components by electrical downconversion
with cos/sin subcarriers
Moshe Nazarathy Copyright
14
Coherent Homodyne BPSK Receiver
*
Re r ( t ) L
r (t )
L
Moshe Nazarathy Copyright
In this case the 2nd quadrature
is not necessary
as the noiseless part of r ( t )
does not contain an imaginary part.
Assume that L was tuned to be
real-valued (i.e. in phase or in anti-phase
with the possible values of r ( t )
15
Binary Differential Phase Shift Keying (BDPSK)
0 or 180
The optical mixer
becomes a key
building block
in optical DPSK
realization
rk  1 rk
Extract PD
Differentially Coherent Detection
 rk   rk 1   rk rk 1
*
Re r (t )r (t  T )
*
r (t )
sgn( )
T
DELAY
INTERFEROMETER
(DI) FRONT-END
Moshe Nazarathy Copyright
r (t  T )
*
k k 1
Re r r
 1

 rk rk 1 cos   rk   rk 1 

 rk rk 1  rk   rk 1
 

  rk rk 1  rk   rk 1  
16
Differential
vs. Coherent
Detection
Previous symbol
DPSK reference
Current symbol
rk  4 rk  3 rk  2 rk  1 rk
(a)
DPSK DETECTION
rk  4 rk  3 rk  2 rk  1 rk
*
COHERENT DETECTION
LO
LIGHT
SOURCE
Moshe Nazarathy Copyright
*
(b)
17
QDPSK receiver front-end

I-port
r (t ) r (t  T ) e
*
r (t )
T

 90
T
Q-port
The bias effects a rotation of the constellation: Typically 
Moshe Nazarathy Copyright
j
18

45
18
QDPSK receiver front-end
r (t )r (t  T )e
*
 45
r (t )
I-port
T


j / 4
45
sgn( )


sgn( )


1
1
 45
T
Q-port
19
Moshe Nazarathy Copyright
19
Homodyne/Intradyne Coherent Receiver
Technology considerations
X-pol.
Y-pol.
Moshe Nazarathy Copyright
20
Coherent Transmitter block diagram
Technology considerations
Alternative
View
Moshe Nazarathy Copyright
21
100G Coherent Polarization-Muxed QPSK
(PM-QPSK) is the next step
Two phase DOFs and two polarization DOFs: 28 Gbaud operation
Parallel transmission of 28Gb/sec on each quadrature of each polarization: 4 parallel lanes
112Gb/s  2 polarizations 56 Gb/s each, QPSK (2 bits/sym), 28Gsym/sec
Moshe Nazarathy Copyright
22
A formulation of
COHERENT DETECTION
MODELING
and error probability performance
- suited for communication
engineers
Moshe Nazarathy Copyright
23
Coherent detection model (HOM/HET)
iLO   E LO
dd
I&D IDEAL
PHOTON COUNTER

id   E d
  Er
  Er
2
2
  E re
j c t
 E LO e
 IF
j LO t
2
  Er
2
  E LO
 j (  E r   E LO )
dd
ir
 2  R e E r E LO e
*
 2  R e E LO E r e
  E LO
2
 2  E LO E r cos   IF t   E r   E LO 

e
dd
ir
j
 c   L O  t
j I F t
2
 E LO 
(LO boosting) factor

2
  E LO
Coherent Gain g L O   E L O 
id 
2
 E LO

dd
iLO
LO
2
2
  Er
dd
ir

dd
iLO
 iLO

dd
dd
iL O
 i LO  2 g LO E r cos   I F t   E r   E L O 
dd
 i LO  2 R e g LO E r e
dd
g LO  g LO e
j (  IF t   E r   E LO )
j  E LO
Homodyne: Just set  IF  0
Moshe Nazarathy Copyright in the HET result

HET: i d 
HOM:
 i L O  2 R e g LO e
dd
dd
ir
id 
 j  E LO
E re
j IF t
 i LO  2 R e g L O E r e
dd
dd
ir
dd
ir
*
j IF t
 i LO  2 R e g LO E r
dd
*
25
Full optical demodulator - 90 deg balanced hybrid – heterodyne
i 
I
d

E re
2
j c t
 E LO e
j LO t
2


Ere
2
j c t
 E LO e
Ere
E LO e
1

1
1 

 1
1
2
2
 2 R e g LO E r e
g LO 
Coupling matrix
1
2
j LO t
in field 
1
2
 E re

j c t
 E LO e
j LO t


j LO t
dd
+
_
1
2
 E re

j c t
 E LO e
j LO t


Single-Polarization Single-Quadrature Down-Converter
(Optical Demodulator)
Relative to a single-ended detector,
the SNR at the balanced detector differential output is halved
(assuming same # of signal photons at input)
as sig. gain did not change, while noise doubled
However, setting same # of photons at the PD in both cases,
the SNR is double (due to the coh. sig. add.)
j IF t
j E LO
Signal is atten.
thru the coupler
but sig. currents
add-up
in amplitude
*
coupler
Moshe Nazarathy Copyright
 iLO e
in current ; but 2  balanced P D gain
j c t
1
2
*
2 R e g LO E r e
j IF t
Same factor of 2
as in the single-ended
Noise from
the two PDs
adds up
incoherently
doubling
in noise
power
26
Full optical demodulator - 90 deg balanced hybrid –
homodyne

i 
I
d
i

Q
d
E r  E LO
2
E r  jE LO
2
4

4




E r  E LO
4
2
E r  jE LO
4
Half the
single-ended case
(and the DD terms
cancel out)
 R e g LO E r
*
2
 Im g L O E r
*
 g L O   E L O  0 means phase error –
received constellation tilt
g LO 
 iLO e
dd
j E LO
We shall assume that the carrier-recovery system effected  g LO  0
id  j id  E r
I
E R (t )
E LO
1
2
 E R ( t )  E LO 
1
2
 E R ( t )  E LO 
coupler
+
_
Re g
*
LO
Er
i
I
d
*
g LO E r
90
1
2
 E R (t ) 
 E R (t ) 
j E LO 
j E LO 
i
_
splitting
factor
1
2
+
1
2
Im g LO E r
Q
d
*
Single-Polarization Down-Converter (Optical Demodulator)
Moshe Nazarathy Copyright
Q
Lost a
factor of 2
in ampl.
due to input
splitting
27
Full optical demodulator - 90 deg balanced hybrid –
serodyne (for heterodyne just use upper branch)
i 
I
d
i
Q
d


4

4
E re
E re
j c t
j c t
 E LO e
j LO t
 jE LO e
j LO t
2
2




4
4
j c t
E re
 E LO e
j c t
E re
j LO t
 j E LO e
2
j LO t
 R e g LO E r e
*
2
j IF t
 Im g L O E r e
*
j IF t
*
g LO
Equivalent
system:
E r (t )
2e
j IF t
drop IF carrier
for homodyne
id  i d  jiQ
I
i sh ( t )
I
g LO 
*
1
2
E R (t )
E LO
coupler
1
2
 E re

 E re

j c t
j c t
 E LO e
 E LO e
j LO t
+
_


j LO t
Re g LO E r e
dd
j IF t
I


*
g LO E r e
Q
j c t
 E re

j c t
 j E LO e
j LO t
 j E LO e
j LO t




_
1
2
 E re

+
1
2
j E L O
id
90
Moshe Nazarathy Copyright
 iLO e
j IF t
id
*
Im g LO E r e
j IF t
Single-Polarization Down-Converter (Optical Demodulator)
28
Full optical demodulator - 90 deg balanced hybrid –
intradyne(for heterodyne just use upper branch)
g L O  e
j E L O
 iLO / 4  g LO / 2
dd
*
g LO
I /Q
N 0  2 e iLO

PD
d
Noise power summation
dd
i
R e/ Im
E r (t )
2e
j IF t
drop IF carrier
for homodyne
i sh ( t )
1
2
E R (t )
E LO
coupler
1
2
 E re

 E re

in balanced PD pair
j c t
 E LO e
 E LO e
j LO t
+
_


j LO t
j t
*
Re 2 g LO E r e IF
Pwr SNR
3 dB worse
than single-ended
I
id


2 g LO E r e
*
Q
90
 E re

j c t
 j E LO e
j LO t
 j E LO e
j LO t




_
1
2
 E re

j c t
+
1
2
Moshe Nazarathy Copyright
Noise pwr
3 dB lower
than single-ended
dd
dd
PSD =2N 0  2  2 e i LO / 4  e i LO
j c t
dd
2 e iLO / 4
id
 g LO E r e
*
Im 2 g LO E r e
*
j IF t
j IF t
j IF t
Single-Polarization Down-Converter (Optical Demodulator)
29
LO SHOT-NOISE limited ANALYSIS
Moshe Nazarathy Copyright
32
Symbol SNR evaluation (single-ended det. , counting sig. photons right at PD)
The total photocurrent in each quadrature branch is then expressed as
2
2
dd
dd
dd
dd
is ( t )   E s ( t ) , i L O ( t )   E L O ( t )
ir ( t )  i s ( t )  i s ( t )  i L O ( t )  i sh ( t )
i
HET
s
( t )  2 g LO R e E s ( t ) e
j IF t
e
( )
 2 g LO E s ( t ) cos (  IF t   s
HOM
is
j

HET:

i ( t ) dt  4
( )
s / N0 

Ks 

i
i
2
s

dd
s
( t ) dt / N 0  4
E s ( t ) cos (  IF t   s


i (t )dt  4
2
s
2
g LO

2
g LO
N 0nh

2

E s (t ) dt

2
E s ( t ) dt 

averaging
2
nhe

2
g LO

N0

(  iLO )

2

2 e iLO

2e

2 h
2

E s ( t ) dt


2
nhe
i
dd
s
2
(t )dt 
nh

2
nh  
1
s
N0
Moshe Nazarathy Copyright
2
HOM twice as large !
2
E s ( t ) dt No squared-cos

Assume real-valued1-D HOM
constellation: specifically BPSK

(t )   )dt
2
g LO

( t ) dt / e  q / e # of PHOTO-ELECTONS

( )
2

HOM:
( t )   2 g LO E s ( t )
SYMBOL SNR
EVALUATION


2

( t )  2 g LO R e E s ( t )  2 g LO E s ( t )
 2 g LO E s ( t ) cos  s
2
g LO

(t )   )


2
s
Ks
HET
HOM
2K s ,

 Ks,
HOM
HET
33
Equivalent electrical circuit for optically coherent detection
below
HOM
is ( t )
HET
x
i (t )  2 g c R e E s (t )e
x
r
j (  IF t   )
 i sh ( t )
j
ir ( t )  2 g c R e e E s ( t )  ish ( t )
random phase picked up by the signal over the
channel, minus the phase of the LO
E s (t )
2 g LO i
(t )
s
x
ir ( t )
e
2e
j
j IF t (absent for
locked HOM)
i sh ( t )
Effective TX
signal
Moshe Nazarathy Copyright
photodiode
effective input
One-sided PSD:
N 0  2 ei LO
RX front-end
equivalent circuit
AWGN module
2
f (t )
Re
rk
RX backend: SYN / ASYN
rk  r ( k T )  Ak e
s
N0
2K s ,

 Ks,
HOM
HET
j
 nk

s 
i
2
s
( t ) dt

35
Equivalent electrical circuit for optically coherent detection
and passband
PSK / OOK / M-ASK / DB
M-ary PSK, BPSK and QPSK in particular
Moshe Nazarathy Copyright
HOM / HET
SYN
ASYN
36
Comparing OADD and COH detection
for the
HET
HOM
is the number of photo-electrons
K s generated by the signal pulse in
SYN
ASYN
also OADD (ASYN)
Essentially the same substitution
for an Optical Amplifier with Direct Detection
(OADD ) with K  K in / n
s
an equiv. DD system
(the current system with the LO turned off)
s
sp
Here K s is the number of photons
in the signal pulse at the OA input,
normalized by n sp
Further to the symbol SNRs, we must also consider the equivalent block diagrams.
We shall see that the following two properties hold:
HOM 3 dB better
than HET SYN
Moshe Nazarathy Copyright
OADD and HET ASYN
will be seen to be equivalent !!
37
OADD  ASYN HET analogy
E s (t )
g LO 
E s (t )e
 i
dd
LO
re
s
i (t )
Ks
Photons LO
per pulse
LO Mixing LO shot-noise
gain
j
2 g LO
AWGN
Eff. ch.
Re
Electrical
IF Filter
RX
backend
f (t )
G i sh ( t ) n ( t )
2e
j  IF t
SIG. GEN. MODEL
OA gain
Optical
ASE noise Filter (OF)
G
The receiver block
out
E
(
t
)
E
(t )
s
s
diagrams
OF
+
are identical!
received SNRs Es/No K s
f (t )
E ase ( t )
as functions of Ks
Photons
are Nazarathy
also identical!
Moshe
Copyright
per pulse
Electrical
ENV. DET
2
rk
PHOTO-DET
Aˆ
0
38
BER OF PAM WITH OADD AND COH DETECTION
s
N0
q 

f ,h

dˆ 

dˆ
†
Ks
a0

dˆ 
q 
2K s ,

 Ks,
a

f ,h
2
0
2

dˆ
†
2
0
2

/2
a/
Ks

2
Ks
a

2
2
2
a0
a
a
a/
Ks
HET


/2
HOM

2
2
38 ph/bit taking into account more sophisticated OA statistics
Moshe Nazarathy Copyright
41
BER OF PAM WITH OADD AND COH DETECTION
s
N0
q 

f ,h
†

dˆ
Ks
 2
a  ( a )

dˆ 
2
a
Moshe Nazarathy Copyright
2K s ,

 Ks,
HOM
HET
Ks
Note: this pertains to an idealized configuration
whereby the loss entailed in combining the sig and LO
is ignored
42
DD ASK
(1 )
Nr
E
( )
r
 Ep  0
PHOTON
COUNTER
(0)
Nr
  Ep
Self-study
2
 m  E p 
0
ˆ  1 \ 0
(1 )
Nr
Nr
 20
peak
ASK
ASK
9
SLICER
0
”0”
1,2,3…”1”
@ 10 BER
 10
avg
Requires negligible receiver thermal noise !!!
unattainable ideal !!!
Pe  A S K -D D  
Moshe Nazarathy Copyright
e
m E p 



2
(1 )
1
However, with either coherent or optical amplified detection  e
2
we may get the receiver thermal noise out of the way !!
Coherent: we are left with the shot-noise of the LO
OA: we are left with the ASE
1
 Nr
20

1
2
e
2 N r
10
Pe  A S K   1 0
9
43
Comparison of receiver sensitivities for
several modulation formats
HOM HET
SYN
BPSK 9
BDPSK 10
DB
15
OOK 18
QPSK 18
Moshe Nazarathy Copyright
18
30
36
36
HET
OADD
ASYN
20
31
38
-
20
31
38
-
44
Summary: comparative ideal performance
Photons/b
it
ASK
HOM
PSK HOM
DPSK
HOM
ASK HET
PSK HET
DB
72
ASYN ASK
HET
40
QDPSKBAL
37.3
ASYN
HET 31
SYN ASK
HET
36
SYN
HET
20
30
4PSK-BAL
18.7
18
ASK-BAL
10
DD-ASK
DPSK-BAL
9
PSK-BAL
5
Super-QuantumLimit PSK
Moshe Nazarathy Copyright
PSK HET
COH
SYN
HOM 15
45
IT’S OVER...
GOOD LUCK!
Moshe Nazarathy Copyright
46

similar documents