title

Report
Developing a Design/Simulation Framework
A Workshop with CPDA's Design and Simulation Council
April 6, 2005  Atlanta, Georgia
www.cpd-associates.com
Achieving Fine-Grained CAE-CAE Associativity via
Analyzable Product Model (APM)-based Idealizations
Topic Area: Design-Analysis Interoperability (DAI)
[email protected]
http://www.marc.gatech.edu/
http://eislab.gatech.edu/projects/
Synopsis: This talk overviews a simulation template methodology based on analyzable
product models (APMs) that combine design information from multiple sources, add
idealization knowledge, and bridge semantic gaps to enable advanced DAI.
Copyright © All Rights Reserved. Permission to reproduce and distribute without changes for non-commercial purposes
(including internal corporate usage) is hereby granted provided this notice and a proper citation are included.
Abstract
Achieving Fine-Grained CAE-CAE Associativity via
Analyzable Product Model (APM)-based Idealizations
Topic Area: Design-Analysis Interoperability (DAI)
This presentation overviews a simulation template methodology based on the analyzable product model
(APM) knowledge representation. APMs combine design information from multiple sources, add
idealization knowledge, and bridge semantic gaps to enable advanced CAD-CAE interoperability.
To understand why generalized design-simulation integration is a challenging proposition, we first review
concepts like heterogeneous transformations and multi-fidelity idealizations via industrial examples.
Next we describe how an APM is a key component in the multi-representation architecture (MRA)
simulation template methodology. In brief, MRA-based templates connect APMs with analysis models in a
manner that is reusable, modular, and multi-directional. This approach supports multiple levels of
abstraction and enhances physical behavior modeling and knowledge capture for a wide variety of design
models, analysis models, and engineering computing environments.
Finally, we walk through several design-analysis scenarios including airframe structural analysis and
electronics thermal and deformation analysis. Such examples demonstrate how the MRA supports a
diversity of physical behaviors, analysis fidelities, and CAD/CAE methods and tools in a unified manner.
This holistic approach leverages rich product models and open standards (e.g., STEP AP210 for electronics
and AP233/SysML for systems of systems) and provides a foundation for next-generation design/simulation
frameworks.
http://eislab.gatech.edu/pubs/seminars-etc/2005-cpda-dsfw-peak/
2
Speaker Biography
Russell S. Peak
Senior Researcher
PLM Center of Excellence
Georgia Institute of Technology (GIT)
Dr. Peak joined the GIT research faculty in 1996 to create and lead a design-analysis interoperability thrust
area. Prior experience includes phone design at Bell Laboratories and design-analysis integration
exploration as a Visiting Researcher at Hitachi in Japan.
Russell focuses on knowledge representations that enable complex system interoperability and simulation
automation. He originated constrained objects (COBs), the multi-representation architecture (MRA) for
CAD-CAE interoperability, and context-based analysis models (CBAMs) -- a simulation template
knowledge pattern that explicitly captures design-analysis associativity. This presentation highlights
analyzable product models (APMs) as a key MRA component.
He teaches this and related material within short courses and graduate courses. Russell has served as
principal investigator on numerous research projects with sponsors including Boeing, DoD, IBM, NASA,
NIST, Rockwell Collins, Shinko (Japan).
He chairs the ASME CIE Engineering Information Management Technical Committee and is the GIT
General Chair for the 2005 NASA-ESA Workshop on Product Data Exchange. He represents GIT on the
Technical Advisory Committee of PDES Inc., an international consortium developing engineering
interoperability techniques. He is also Research Director at InterCAX LLC.
Dr. Peak received all his degrees in the GIT School of Mechanical Engineering (1984, 1985, 1993).
3
Nomenclature



ABB
AMCOM
APM
CAD
CAE
CBAM
COB
COI
COS
CORBA
DAI
EIS
ESB
FEA
FTT
GUI
IIOP
MRA
ORB
OMG
PWA
PWB
SBD
SBE
SME
SMM
ProAM
PSI
STEP
VTMB
XAI
XCP
XFW
XPWAB
ABB-SMM transformation
idealization relation between design and analysis attributes
APM-ABB associativity linkage indicating usage of one or more i
analysis building block
U. S. Army Aviation and Missile Command
analyzable product model
computer aided design
computer aided engineering
context-based analysis model
constrained object
constrained object instance
constrained object structure
common ORB architecture
design-analysis integration
engineering information systems
engineering service bureau
finite element analysis
fixed topology template
graphical user interface
Internet inter-ORB protocol
multi-representation architecture
object request broker
Object Management Group, www.omg.com
printed wiring assembly (a PWB populated with components)
printed wiring board
simulation-based design
simulation-based engineering
small-to-medium sized enterprise (small business)
solution method model
Product Data-Driven Analysis in a Missile Supply Chain (ProAM) project (AMCOM)
Product Simulation Integration project (Boeing)
Standard for the Exchange of Product Model Data (ISO 10303).
variable topology multi-body
X-analysis integration (X= design, mfg., etc.)
XaiTools ChipPackage™
XaiTools FrameWork™
XaiTools PWA-B™
4
Presentation Overview


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
– Complex idealizations enabled by rich stds.-based product models
– Diverse-idealization many-body challenge problem
5
Outline


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Circuit board examples
– Flap link examples (benchmark tutorial)
» Plus: usage of emerging SysML parametric capabilities
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
» CATIA v5-based airframe example
– Complex idealizations enabled by rich stds.-based product models
» Circuit board warpage using ISO 10303-210 (STEP AP210)
– Diverse-idealization many-body challenge problem
» Chip packages & circuit assembly warpage analysis
» Rich product models + complex & diverse idealizations + advanced meshing
6
An Introduction to X-Analysis Integration (XAI)
Short Course Outline
Part 1: Constrained Objects (COBs) Primer
– Nomenclature
 See
Background Info.
slides
Part 2: Multi-Representation Architecture (MRA) Primer
– Analysis Integration Challenges
– Overview of COB-based XAI
Part 3: Example Applications
» Airframe Structural Analysis (Boeing)
» Chip Package Thermal Analysis (Shinko)
» Circuit Board Thermomechanical Analysis
(DoD, JPL/NASA, NIST) - Warpage
See: http://eislab.gatech.edu/projects/
– Summary
Highlights
in next slides
Part 4: Advanced Topics & Current Research
7
Design-Analysis Interoperability Challenges
Decomposing and characterizing the DAI problem ...
Idealizations & Heterogeneous Transformations
 Dimensions of Diversity

– Information
– Disciplines & Behaviors
– Fidelity
– Feature Levels
– CAD/CAE Methods & Tools, …

Multi-Directional Associativity:
Design  Analysis
Analysis  Analysis
8
Analysis Integration Challenges:
Heterogeneous Transformations
 Homogeneous
Transformation
Design
Model A
Design
Model B
STEP
AP210
Mentor Graphics

Cadence
Heterogeneous Transformation
Design
Model A
STEP
AP210
Mentor Graphics
??
Analysis
Model A
STEP
AP209
Ansys
9
Analysis Integration Challenges:
Information Diversity
“Manufacturable”
Description
STEP
AP210
Environmental
Conditions
“Analyzable”
Description
STEP
AP220
lamination
temperature =
200oC
Specification
Semantics
“PWB should
have low bow & twist”
“Warpage < 7.5% when
board is cooled from
lamination to 25oC”
B
Idealizations
10
Multi-Fidelity Idealizations
Behavior-dependent Idealized Geometries; Same Dimension
Thermal Resistance Idealized Geometry (3D)
FEA Model
Common Design Model
Thermal Stress
Idealized Geometry (3D)
FEA Model
11
Multi-Fidelity Idealizations
Same Behavior; Idealized Geometries of Varying Dimension
Design Model (MCAD)
Analysis Models (MCAE)
Behavior = Deformation
1D Beam/Stick Model
flap support assembly
inboard beam
3D Continuum/Brick Model
12
Reusable Multi-Fidelity
Geometric Idealizations: Bounding Shapes
Analysis Models
Solder
Joint
Deformation
Multiple Uses
Design Model
2-D bounding box
PWA
Cooling
Multi-Fidelity
Idealizations
Solder
Joint
Deformation
Multiple Uses
3-D bounding box
PWA
Cooling
13
Outline


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Circuit board examples
– Flap link examples (benchmark tutorial)
» Plus: usage of emerging SysML parametric capabilities
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
» CATIA v5-based airframe example
– Complex idealizations enabled by rich stds.-based product models
» Circuit board warpage using ISO 10303-210 (STEP AP210)
– Diverse-idealization many-body challenge problem
» Chip packages & circuit assembly warpage analysis
» Rich product models + complex & diverse idealizations + advanced meshing
14
Product Development Knowledge Graph
Typical Current Issues
Coarse-grained
PDM
R
R
Suppliers
Designers
R
R
R
CAD1
R
R
R
CAD2
Not
Interoperable
R
R
R
R
Not Computerinterpretable
R
R
R
R
R
R
FEM
R
R
R
R
R
R
R
Manufacturing
R
Process
Planning
Implicit
Source: Chris Paredis, 2004
Analysts
15
Design-Analysis Interoperability (DAI) Panorama
Flap Link Benchmark Tutorial - COB-based Constraint Schematic
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Material Model ABB:
 

G 
E
2 (1  r5
)
e 
cte, 

T
t


area, A
T, ,  x
Extension
r3
r2
undeformed length, Lo

e
shear strain, 
 t  T
youngs modulus, E
poissons ratio, 

r4
force, F
G
F
E, A, 
E
reference temperature, To
1D Linear Elastic Model
shear stress, 
L
Lo
One D Linear
F
Elastic Model
(no shear)
edb.r1
temperature, T
L
material model
Extensional Rod
Flap Link Extensional Model
total elongation,L
r1
start, x1
shear modulus, G
linkage
effective length, Leff
Extensional Rod
(isothermal)
al1
E
temperature change, T
r4
thermal strain, t
y
material model
elastic strain, e

Torsional Rod
strain, 
r3
stress, 
Lo
L
x1
L
length, L
end, x2
r1
One D Linear
T
Elastic Model
r2
E
torque, Tr

polar moment of inertia, J

radius, r
mode: shaft tension
Lo
material
T
G, r, ,  ,J
x
area, A
cross section
x2
al2
linear elastic model
A
youngs modulus, E al3
reaction
condition
G
E

F

stress mos model
e
T
t




Analysis Tools
(via SMMs)
Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
r3
MS
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
Flap Link Plane Strain Model
inter_axis_length
linkage
deformation model
Parameterized
FEA Model
sleeve_1
w
sleeve_2
w
shaft
cross_section:basic
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
x,max
rs2
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
effective_length
allowable stress
L
B
sleeve_1
w
sleeve_2
w
ts2
ts1
s
sleeve1
t
ux mos model
stress mos model
r
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
x
sleeve2
shaft
rib1
allowable inter axis length change
R1
t
rib2
R1
r
R2
x
ds1
ds2
B
shaft
cross_section
wf
R3
tw
R4
t1f
Leff
R6
R5
deformation model
t2f
critical_section
critical_detailed
Torsional Rod
wf
linkage
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
Lo
t
t2f
R2
critical_simple
wf
h
t
tw
R3
E
name
stress_strain_model
mode: shaft torsion
R8
area
b
linear_elastic
hw

tf
cte
area
R9
Torsion
R10

1
R7
h
material
al1
b
t1f
rib_2
effective length, Leff
R11
hw
cross section:
effective ring
material
condition
outer radius, ro
al2b
linear elastic model
allowable stress
twist mos model
Margin of Safety
(> case)
COB = constrained object
al2a
reaction
R12
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
polar moment of inertia, J
1D
allowable
shear modulus, G
al3
2
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
16
Complex System Representation & Simulation Interoperability
Naval Systems of Systems (SoS) Scenarios (Notional)
deformation model
Thermal
Bending Beam
pwa
total diagonal
associated_pwb
total thickness
Optimization Templates
coefficient of thermal bending
associated condition
temperature
reference temperature
wrapage mos model
Margin
of Safety
allowable
warpage
actual
MS
System Description
Simulation Building Blocks
Tools & Resources
Continuum ABBs:
CAD Tools
Tribon, CATIA, Mentor Graphics, ... Material Model ABB:
reference temperature, To
E
2(1  )
poissons ratio, 
G
cte, 
 t   T
temperature change,T

stress,
r3

e 
E

e
T
t


thermal strain, t
  e  t
L  L  Lo
Evacuation
Mgt.
r1
max. height (absolute), ha
20135-5512 digital oscillator
component, c
r2
0.060 in.
pwb
component
h
w
l
w
z  hso  t pwb
z
standoff height, hso:
r2
E

Lo
One D Linear T
Elastic Model
T
G, r, ,  ,J
x
G

e
T
t



linkage
2D

Trr
J
 
area, A
cross section
material
Extensional Rod
(isothermal)
al1
L
L
x2
al2
linear elastic model
Lo
x1
A
youngs modulus, E al3
E

F

reaction
condition
General Math
Mathematica,
Matlab, …
r3r
stress mos model
L0
   2  r1
1
theta start, 1
effective length, Leff
mode: shaft tension

undeformed length, Lo
Evacuation Codes
Egress, Exodus, …
r3
origin
y
material model
Torsional Rod
strain, 
radius, r
Margin of Safety
(> case)
theta end, 2
allowable stress
allowable
twist, 
actual
MS
inter_axis_length
linkage
3D
flap_link
Propeller
Hydrodynamics
effective_length
w
sleeve_1
t
r
w
sleeve_2
w
deformation model
Parameterized
FEA Model
L
ws1
ts1
rs2
ws2
t
mode: tension
r
wf
wf
tw
tf
tf
material
E
name

F
allowable stress
allowable inter axis length change
ux mos model
stress mos model
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
wf
R3
MS
tw
R4
…
R6
R5
t2f
deformation model
critical_section
critical_detailed
wf
Torsional Rod
linkage
tw
R11
hw
b
R7
t1f
h
rib_2
t2f
R2
area
critical_simple
wf
h
material
R8
b
t
CFD
Flotherm, Fluent, …
E

linear_elastic_model
condition reaction
R2
cross_section
t
x,max
rs2
cross_section:basic
tw
R1
t1f
rib_1
ux,max
ts2
shaft
R1
x
shaft
w
sleeve_2
t
t
r
sleeve_1
r
x
tw
R3
E
name
R9
hw

tf
cte
area
R10
Damaged
Stability
effective length, Leff
material
condition
linear_elastic
al2a
outer radius, ro
al2b
linear elastic model
shear modulus, G
al3
Margin of Safety
(> case)


FEA
Ansys, Nastran, …
allowable
actual
MS
MS
fatigue model
Coffin-Manson
Model
[2.1]
thermal model [2.2]
[2.1]
strain model: [1.x]
Thermal Model
[2.2]
[2.2]
r
G
Margin of Safety
(> case)
allowable
twist
actual
1
Navigation
Accuracy
J
stress mos model
r
Legend
Tool Associativity
Object Re-use

2
T
allowable stress
R12
Integrated System Models
Lo
polar moment of inertia, J
reaction
twist mos model
…
stress_strain_model
al1
1
cross section:
effective ring
mode: shaft torsion
allowable
Libraries & Databases
Classification Codes, Materials,
Personnel, Procedures, …
0.500 in.
hsr  hc  hso
t
length, L
torque, Tr
Operation Mgt. Systems
max. height (surface relative), hsr
ha  hsr  t pwb
ABC_9230 Warning Module PWB
pwb
total elongation,L
L  x2  x1
polar moment of inertia, J
Requirements & S/W Tools
DOORS,
Requisite Pro,
Eclipse, …
F
l
end, x2
r1
r4
L
T, ,  x
r3
L
L
r1
start, x1
shear modulus, G

r2
undeformed length, Lo
elastic strain, e

r4
F
A
shear strain, 
r5

G

youngs modulus, E

E, A, 
E
T  T  To
area, A
L
Lo
F
Simulation Tools
…
shear stress,
One D Linear
Elastic Model
(no shear)
edb.r1
force, F
1D Linear Elastic Model
y
material model
Extensional Rod
temperature, T
Simulation Templates
of Diverse Behavior & Fidelity
[2.2]
[2.2]
[2.1]
[2.2]
[2.2]
solder joint
Utilizes generalized MRA terminology (preliminary)
Occurrence
Deformation
Model
Discrete Event
Arena, Quest, …
solder
[email protected] 2004-11
17
Circuit Board Design-Analysis Integration
Electronic Packaging Examples: PWA/B
Design Tools
y
mv6
reference temperature, To
E
T  T L To
A
ts1
ts2

s
Sleeve 1
Shaft
Sleeve 2
smv1
ds1
force, F
area, A
ECAD Tools
Mentor Graphics,
Zuken, …
A
r4
F
A
Leff
linkage

mv4
L
F
E, A, 
T, ,  x
One D Linear
Elastic Model
(no shear)
mv5
sr1
temperature, T
L
Lo
F
material model
youngs modulus, E
cte, 
ds2
e
T
t


elastic strain, e
mv2
thermal strain, t
mv3
strain,
mv1
effective length, Leff
r2
undeformed length, Lo
start, x1
end, x2
cross section:
effective ring
L  L  Lo
condition
r1
L  x2  x1
material

polar moment of inertia, J
L
r3 ro
outer radius,
L
linear elastic model
Margin of Safety
(> case)
allowable
al3
total elongation,L
length, L
allowable stress
twist mos model
al2a
al2b
shear modulus, G
reaction
deformation model
Torsional Rod
stress,al1

temperature change,T
mode: shaft torsion
Lo

Modular, Reusable
Template Libraries
1
2
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
STEP AP210‡
GenCAM**,
PDIF*
PWB Stackup Tool
XaiTools PWA-B
Analysis Modules (CBAMs)
of Diverse Mode & Fidelity
Analyzable
Product Model
XaiTools
PWA-B
Solder Joint 1D,
Deformation* 2D,
3D
XaiTools Analysis Tools
PWA-B
General Math
Mathematica
FEA Ansys
PWB
Warpage
1D,
2D
Laminates DB
Materials DB
‡ AP210 Ed2 WD8
* = Item not yet available in toolkit (all others have working examples)
PTH
1D,
Deformation 2D
& Fatigue**
** = Item available via U-Engineer.com
18
PWB Warpage Templates
a.k.a. CBAMs: COB-based analysis templates
ABB
deformation model
APM
Thermal
Bending Beam
pwa
associated_pwb
total diagonal
al1
total thickness
al2
coefficient of thermal bending
associated condition
al3
temperature
al4
al5
wrapage mos model
Margin
of Safety
actual
MS

 b L2 T
t
b
t
SMM

T
reference temperature
allowable
L
PWB Thermal Bending Model
(1D formula-based CBAM)
APM
warpage
pwa
associated_pwb
T
Treference
ABB
al6
layup
Usage of Rich
Product Models
APM
deformation model
Parameterized
FEA Model
TOTAL
total_thickness
layers[0]
nominal_thickness
layers[1]
prepregs[0]
nominal_thickness
layers[2]
top_copper_layer
nominal_thickness
related_core
nominal_thickness
primary_structure_material linear_elastic_model
CU1T
PREPREGT
CU2T
E
EXCU
cte
ALPXCU
layers[3]
prepregs[0]
UX
POLYT
nominal_thickness
UY
SX
TETRA1T
primary_structure_material linear_elastic_model E
EXEPGL
cte
ALPXEGL
condition
reference temperature
TO
ux mos model
PWB Plane Strain Model
(2D FEA-based CBAM)
temperature
DELTAT
Margin of Safety
(> case)
allowable
actual
MS
19
Frame of Reference
CAD-CAE Model Representation & Interoperability R&D
~1992 - Present
Design Models
Other Model
Abstractions
(Patterns)
Design
Models
Analysis
Models
Analysis Models
Resulting techniques to date:
 Architecture with new model abstractions (patterns)
– Enables modular, reusable building blocks
– Supports diversity:
» Product domains and physical behaviors
» CAD/E methods and tools
– Supports multiple levels of fidelity
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
20
Frame of Reference (cont.)
CAD-CAE Model Representation & Interoperability R&D
Key Capabilities
Idealization & Associativity Relations
Design Models


Other Model Abstractions (Patterns)
Analysis Models
Represent design-analysis model associativity
as tool-independent knowledge
Provide methodology
– Capture analysis idealization knowledge
– Create highly automated analysis templates
– Support product design
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
21
Frame of Reference (cont.)
CAD-CAE Model Representation & Interoperability R&D
Mapping to a Conceptual Architecture
Idealization & Associativity Relations
Other Model Abstractions (Patterns)
Design Models
ProductSpecific
3
Analyzable
Product Model
Analysis Models
ProductIndependent
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
Solder
Joint
Component
i
ABB
SMM
APM ABB
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
Solution Tools
Multi-Representation
Architecture (MRA)
Engineering Information Systems Lab  eislab.gatech.edu
22
A Basic Solder Joint Deformation Template
Informal Associativity Diagram
Design Model
3 APM
PWA Component Occurrence
 linear-elastic model
 primary structural
material
Solder
Joint
Analysis Model
 total height, h c


Component
base: Alumina
Epoxy
PWB
core: FR4
Solder Joint Plane Strain Model
4 CBAM
Plane Strain Bodies System
2 ABB
C
L
h1
APM ABB
body 1
body 4
To
body 3
body 2
plane strain bodyi , i = 1...4
geometryi
materiali (E,  ,  )
ABB SMM
1 SMM
FEA Model
Printed Wiring Board/Assembly (PWA/PWB)
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
23
Outline


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Circuit board examples
– Flap link examples (benchmark tutorial)
» Plus: usage of emerging SysML parametric capabilities
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
» CATIA v5-based airframe example
– Complex idealizations enabled by rich stds.-based product models
» Circuit board warpage using ISO 10303-210 (STEP AP210)
– Diverse-idealization many-body challenge problem
© 1993-2001 GTRC
» Chip packages & circuit assembly warpage analysis
» Rich product models
+ complex & diverse idealizations + advanced meshing
Engineering Information Systems Lab  eislab.gatech.edu
24
Design-Analysis Interoperability (DAI) Panorama
Flap Link Benchmark Tutorial - COB-based Constraint Schematic
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Material Model ABB:
 

G 
E
2 (1  r5
)
e 
cte, 

T
t


area, A
T, ,  x
Extension
r3
r2
undeformed length, Lo

e
shear strain, 
 t  T
youngs modulus, E
poissons ratio, 

r4
force, F
G
F
E, A, 
E
reference temperature, To
1D Linear Elastic Model
shear stress, 
L
Lo
One D Linear
F
Elastic Model
(no shear)
edb.r1
temperature, T
L
material model
Extensional Rod
Flap Link Extensional Model
total elongation,L
r1
start, x1
shear modulus, G
linkage
effective length, Leff
Extensional Rod
(isothermal)
al1
E
temperature change, T
r4
thermal strain, t
y
material model
elastic strain, e

Torsional Rod
strain, 
r3
stress, 
One D Linear
T
Elastic Model
r2
E
torque, Tr

polar moment of inertia, J

radius, r
mode: shaft tension
Lo
material
x
area, A
cross section
T
G, r, ,  ,J
L
L
x2
al2
linear elastic model
A
youngs modulus, E al3
reaction
condition
G
E

F

stress mos model
e
T
t




Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
r3
MS
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
Flap Link Plane Strain Model
inter_axis_length
linkage
deformation model
Parameterized
FEA Model
sleeve_1
w
sleeve_2
w
shaft
cross_section:basic
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
x,max
rs2
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
effective_length
allowable stress
L
B
sleeve_1
w
sleeve_2
w
ts2
ts1
s
sleeve1
allowable inter axis length change
t
ux mos model
stress mos model
r
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
x
sleeve2
shaft
rib1
R1
t
rib2
R1
r
R2
x
ds1
ds2
B
shaft
cross_section
wf
R3
tw
R4
t1f
Leff
R6
R5
deformation model
t2f
critical_section
critical_detailed
Torsional Rod
wf
linkage
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
Lo
t
t2f
R2
critical_simple
wf
h
t
tw
R3
E
name
stress_strain_model
mode: shaft torsion
R8
area
b
linear_elastic
hw

tf
cte
area
R9
Torsion
R10

1
R7
h
material
al1
b
t1f
rib_2
effective length, Leff
R11
hw
cross section:
effective ring
material
condition
al2a
outer radius, ro
al2b
linear elastic model
allowable stress
twist mos model
Margin of Safety
(> case)
COB = constrained object
polar moment of inertia, J
reaction
R12
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
© 1993-2001 GTRC
Lo
x1
length, L
end, x2
r1
Analysis Tools
(via SMMs)
1D
allowable
al3
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Engineering Information Systems Lab  eislab.gatech.edu
shear modulus, G
2
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
25
Multi-Representation Architecture for
Design-Analysis Integration
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
Solution Tools
26
Analysis Building Blocks (ABBs)
Object representation of product-independent
analytical engineering concepts
Analysis Primitives
Analysis Systems
- Primitive building blocks
Material Models



LinearElastic
Continua


Bilinear
Plastic
N
Low Cycle
Fatigue
- Predefined templates
y
Plane Strain Body
Discrete Elements
body 2
body 1
Distributed Load
Rigid
Support
x
Beam
Cantilever Beam System
No-Slip
Analysis Variables
q(x)
q(x)
Plate
Interconnections
Rigid
Support
Spring
Specialized
Beam
Geometry
Mass
- Containers of ABB "assemblies"
Temperature,T
General
- User-defined systems
Stress, 
Damper
Distributed Load
Strain, 
27
COB-based Libraries of Analysis Building Blocks (ABBs)
Material Model and Continuum ABBs - Constraint Schematic-S
Continuum ABBs
Extensional Rod
Material Model ABB
reference temperature, To
force, F
1D Linear Elastic Model
shear stress,
cte, 
temperature change,T
r1
r4
thermal strain, t
elastic strain, e


stress,
r3

e 
E
start, x1
shear modulus, G
 t  T
r4
F

A
  e  t
modular
re-usage
end, x2
r1
L  x2  x1

e
T
t


r2
 L  L  Lo
radius, r
theta end, 2
r3
L
L
total elongation,L
y
Lo
T
T
G, r, ,  ,J
x
G


Trr
J

e
T
t




r3
r
L0
undeformed length, Lo
theta start, 1
T, ,  x
length, L
E
torque, Tr
polar moment of inertia, J
F
E, A, 

One D Linear
Elastic Model
strain, 
L
F
material model
Torsional Rod
L
Lo
E
r2
undeformed length, Lo
youngs modulus, E
poissons ratio, 
area, A
 T  T  To
One D Linear
Elastic Model
(no shear)
shear strain, 
r5

 
G
E
G
2(1  )
edb.r1
temperature, T
y
material model
 
r1
   2  1
twist, 
28
1D Linear Elastic Model ABB
SysML parametric definition (WIP draft)
par : 1D Linear Elastic Model
  G
«paramConstraint»
r5
 shearstress

shearstrain
shearmodulus
E youngsmodulus
«paramConstraint»
r1
 poissonsratio
 cte
T
G
E
2(1  )
«paramConstraint»
r4
thermalstrain
temperaturechange
e 
 stress

G
 t  T
t
elasticstrain  e
E
«paramConstraint»
r3
«paramConstraint»
r2
strain

  e  t
Implemented in RtS by Alan Moore - www.ARTiSANsw.com - 2005-03-11
29
Extensional Rod ABB
SysML parametric definition (WIP draft)
includes usage of 1D Linear Elastic Model
par : Extensional Rod
temperature
temperaturechange=temperature
-referenceTemperature
«paramConstraint»
r11
E

referenceTemperature
T
stress=force/area
force
area

«paramConstraint»
r4
e
t


strain=totalelongation/
length
«paramConstraint»
r3
undeformedlength
«paramConstraint»
r2
start
end
«paramConstraint»
materialModel : 1D Linear Elastic Model
«paramConstraint»
r1
totalelongation=lengthundeformedlength
totalelongation
length
length=|end-start|
Implemented in RtS by Alan Moore - www.ARTiSANsw.com - 2005-03-11
30
Design-Analysis Interoperability (DAI) Panorama
Flap Link Benchmark Tutorial - COB-based Constraint Schematic
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Material Model ABB:
 

G 
E
2 (1  r5
)
e 
cte, 

T
t


area, A
T, ,  x
Extension
r3
r2
undeformed length, Lo

e
shear strain, 
 t  T
youngs modulus, E
poissons ratio, 

r4
force, F
G
F
E, A, 
E
reference temperature, To
1D Linear Elastic Model
shear stress, 
L
Lo
One D Linear
F
Elastic Model
(no shear)
edb.r1
temperature, T
L
material model
Extensional Rod
Flap Link Extensional Model
total elongation,L
r1
start, x1
shear modulus, G
linkage
effective length, Leff
Extensional Rod
(isothermal)
al1
E
temperature change, T
r4
thermal strain, t
y
material model
elastic strain, e

Torsional Rod
strain, 
r3
stress, 
Lo
L
x1
L
length, L
end, x2
r1
One D Linear
T
Elastic Model
r2
E
torque, Tr

polar moment of inertia, J

radius, r
mode: shaft tension
Lo
material
T
G, r, ,  ,J
x
area, A
cross section
x2
al2
linear elastic model
A
youngs modulus, E al3
reaction
condition
G
E

F

stress mos model
e
T
t




Analysis Tools
(via SMMs)
Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
r3
MS
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
Flap Link Plane Strain Model
inter_axis_length
linkage
deformation model
Parameterized
FEA Model
sleeve_1
w
sleeve_2
w
shaft
cross_section:basic
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
x,max
rs2
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
effective_length
allowable stress
L
B
sleeve_1
w
sleeve_2
w
ts2
ts1
s
sleeve1
t
ux mos model
stress mos model
r
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
x
sleeve2
shaft
rib1
allowable inter axis length change
R1
t
rib2
R1
r
R2
x
ds1
ds2
B
shaft
cross_section
wf
R3
tw
R4
t1f
Leff
R6
R5
deformation model
t2f
critical_section
critical_detailed
Torsional Rod
wf
linkage
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
Lo
t
t2f
R2
critical_simple
wf
h
t
tw
R3
E
name
stress_strain_model
mode: shaft torsion
R8
area
b
linear_elastic
hw

tf
cte
area
R9
Torsion
R10

1
R7
h
material
al1
b
t1f
rib_2
effective length, Leff
R11
hw
cross section:
effective ring
material
condition
outer radius, ro
al2b
linear elastic model
allowable stress
twist mos model
Margin of Safety
(> case)
COB = constrained object
al2a
reaction
R12
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)
polar moment of inertia, J
1D
allowable
shear modulus, G
al3
2
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
31
Multi-Representation Architecture for
Design-Analysis Integration
3
Analyzable
Product Model
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
ABB
SMM
APM ABB
Component
Solder
Joint
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
Solution Tools
32
Analyzable Product Models
(APMs)
Provide advanced access to design data needed by diverse analyses.
Design Applications
Solid
Modeler
Combine
information
Add reusable
multifidelity
idealizations
Analysis Applications
FEA-Based
Analysis
...
Materials
Database
Fasteners
Database
Analyzable Product Model
(APM)
Support multi-directionality
FormulaBased
Analysis
33
Multi-Fidelity Idealizations
Same Behavior; Idealized Geometries of Varying Dimension
Design Model (MCAD)
Analysis Models (MCAE)
Behavior = Deformation
1D Beam/Stick Model
flap support assembly
inboard beam
3D Continuum/Brick Model
34
Flap Link Geometric Model
(with idealizations)
L
B
ts2
ts1
s
sleeve1
sleeve2
shaft
rib1
rib2
ds1
ds2
B
red = idealized parameter
Leff
A, I, J
f
f
tft
tft
htotal
tfb tf
tw
wf
hw
rf
Section B-B
(at critical_cross_section)
Detailed Design
A, I, J
A, I, J
htotal
tfb
hw
tw
htotal
tf
wf
tw
hw
wf
tapered I
Multifidelity Idealizations
basic I
28b
35
Flap Linkage Example
Manufacturable Product Model (MPM) = Design Description
flap_link
Extended Constraint Graph
L
w
sleeve_1
A
ts
ts1
2
t
Sleeve 1
r
Sleeve 2
Shaft
ds1
x
A
ds2
w
sleeve_2
R1
t
r
x
Product Attribute
shaft
Ri
cross_section
Product Relation
wf
tw
t1f
t2f
rib_1
b
h
t
rib_2
R2
b
h
t
material
R3
Constrained Object (COB) Structure (template)
COB flap_link SUBTYPE_OF part;
part_number
: STRING;
inter_axis_length, L
: REAL;
sleeve1
: sleeve;
sleeve2
: sleeve;
shaft
: tapered_beam;
rib1
: rib;
rib2
: rib;
RELATIONS
PRODUCT_RELATIONS
pr2 : "<inter_axis_length> == <sleeve2.origin.y> <sleeve1.origin.y>";
pr3 : "<rib1.height> == (<sleeve1.width> <shaft.cross_section.design.web_thickness>)/2";
pr4 : "<rib2.height> == (<sleeve2.width> <shaft.cross_section.design.web_thickness>)/2";
...
END_COB;
name
36
Flap Linkage Example
Analyzable Product Model (APM) = MPM Subset + Idealizations
flap_link
Extended Constraint Graph
effective_length
L
A
ts
ts1
w
sleeve_1
t
2
s
Sleeve 1
Sleeve 2
Shaft
ds1
r
ds2
A
x
Leff
w
sleeve_2
R1
t
R1
r
R2
x
Product Attribute
shaft
Ri
cross_section
Product Relation
wf
R3
tw
R4
t1f
Idealized Attribute
Ri
effective_length, Leff ==
inter_axis_length (sleeve1.hole.cross_section.radius +
sleeve2.hole.cross_section.radius)
Partial COB Structure (COS)
R6
R5
t2f
critical_section
critical_detailed
Idealization Relation
wf
tw
rib_1
R11
hw
b
R7
t1f
h
t
rib_2
t2f
R2
b
critical_simple
wf
h
t
material
R8
area
tw
R3
name
stress_strain_model
linear_elastic
E
hw

tf
cte
area
R9
R10
R12
37
Flap Link APM
SysML (~UML) class diagram (WIP draft)
cls : FlapLink Structure
«assembly»
FlapLink
sleeve11
1 sleeve2
«assembly»
Sleeve
1 rib1 1 rib2
«assembly»
Rib
shaft
«assembly»
Tapered Beam
1 critical_cross_section
1
hole
«assembly»
Hole
1 cross section
Circle
1
cross_section
1 basic
basic_i_section
1 tapered
tapered_i_section
Area area
1 design
filleted_tapered_i_section
Area area
38
Concurrent Multi-Fidelity
Cross-Section Representations
A, I, J
f
tft
tft
htotal
tfb
tf
tw
wf
hw
rf
Section B-B
(at critical_cross_section)
Detailed Design
A, I, J
A, I, J
f
htotal
tfb
hw
tw
htotal
tf
wf
tw
hw
wf
tapered I
basic I
Multifidelity Idealizations
MULTI_LEVEL_COB cross_section;
design : filleted_tapered_I_section;
Detailed Design Cross-Section
tapered : tapered_I_section;
Idealized Cross-Sections
basic : basic_I_section;
Associativity Relations between
RELATIONS
Cross-Section Fidelities
PRODUCT_IDEALIZATION_RELATIONS
pir8 : "<basic.total_height> == <design.total_height>";
pir9 : "<basic.flange_width> == <design.flange_width>";
pir10 : "<basic.flange_thickness> == <design.flange_base_thickness>";
pir11 : "<basic.web_thickness> == <design.web_thickness>";
pir12 : "<tapered.total_height> == <design.total_height>";
pir13 : "<tapered.flange_width> == <design.flange_width>";
pir14 : "<tapered.flange_base_thickness> == <design.flange_base_thickness>";
pir15 : "<tapered.flange_taper_thickness> == <design.flange_taper_thickness>";
pir16 : "<tapered.flange_taper_angle> == <design.flange_taper_angle>";
pir17 : "<tapered.web_thickness> == <design.web_thickness>";
END_MULTI_LEVEL_COB;
39
Flap Link APM
Implementation in CATIA v5
Design-Idealization
Relation
Design Model
flap_link
Extended Constraint Graph
effective_length
w
sleeve_1
t
r
x
w
sleeve_2
R1
t
R1
r
R2
x
Product Attribute
shaft
Ri
cross_section
Product Relation
wf
R3
tw
R4
t1f
Idealized Attribute
Ri
Idealized Model
R6
R5
t2f
critical_section
critical_detailed
Idealization Relation
wf
tw
rib_1
R11
hw
b
R7
t1f
h
t
rib_2
t2f
R2
critical_simple
wf
h
t
material
R8
area
b
tw
R3
E
name
stress_strain_model
linear_elastic
hw

tf
cte
area
R9
R10
R12
40
Flap link APM implemented in CATIA v5
flap_link
Parameters
part_number
material
inter_axis_length
Primary Directionality
flange_width
flange_thickness
…
Design
Parameters
web_height
r25
web_thickness
r3
r15
basic_xsec_area
Idealized
Parameters
effective_length
Shaft
Design
Parts & Features
Sleeves
Sketch.3
Offset.4
Offset
Sketch.4
Offset.15
Offset
Offset.16
Offset
Pad.3
FirstLimit.6
Length
Hole.1
Diameter
Add.1
Body.6
Hole.2
r2
Diameter
r23
…
Idealized
Bodies & Features
effective_1D_rod
Idealized Attribute
r2
r16 r19
Idealization Relation
Body.12
Pad.12
FirstLimit
Sketch.18
Length.45
Length
Design Attribute
r1
T
b
Design Relation
R
r1
T
R
r30
Length
Relation r1 is a unidirectional (oneway)
relation with b as its
fixed output direction
41
COB-based Constraint Schematic
for Multi-Fidelity CAD-CAE Interoperability
Flap Link Benchmark Example
Design Tools
Analysis Building Blocks
(ABBs)
MCAD Tools
CATIA, I-DEAS*
Pro/E* , UG *, ...
Analysis Modules
of Diverse Behavior & Fidelity
(CBAMs)
Continuum ABBs:
y
Material Model ABB:
 

G 
E
2 (1  r5
)
e 
cte, 

T
t


area, A
T, ,  x
Extension
r3
r2
undeformed length, Lo

e
shear strain, 
 t  T
youngs modulus, E
poissons ratio, 

r4
force, F
G
F
E, A, 
E
reference temperature, To
1D Linear Elastic Model
shear stress, 
L
Lo
One D Linear
F
Elastic Model
(no shear)
edb.r1
temperature, T
L
material model
Extensional Rod
Flap Link Extensional Model
total elongation,L
r1
start, x1
shear modulus, G
linkage
effective length, Leff
Extensional Rod
(isothermal)
al1
E
temperature change, T
r4
thermal strain, t
y
material model
elastic strain, e

Torsional Rod
strain, 
r3
stress, 
Lo
L
x1
L
length, L
end, x2
r1
One D Linear
T
Elastic Model
r2
E
torque, Tr

polar moment of inertia, J

radius, r
mode: shaft tension
Lo
material
T
G, r, ,  ,J
x
area, A
cross section
x2
al2
linear elastic model
A
youngs modulus, E al3
reaction
condition
G
E

F

stress mos model
e
T
t




Analysis Tools
(via SMMs)
Margin of Safety
(> case)
1D
allowable stress
allowable
General Math
Mathematica
Matlab*
MathCAD*
...
actual
r3
MS
undeformed length, Lo
r1
theta start, 1
theta end, 2
twist, 
Flap Link Plane Strain Model
inter_axis_length
linkage
deformation model
Parameterized
FEA Model
sleeve_1
w
sleeve_2
w
shaft
cross_section:basic
t
L
ws1
r
Legend
Tool Associativity
Object Re-use
ts1
rs2
t
2D
mode: tension
ux,max
ws2
r
ts2
x,max
rs2
wf
wf
tw
tw
tf
tf
material
E
name
E

linear_elastic_model

F
condition reaction
flap_link
effective_length
allowable stress
L
B
sleeve_1
w
sleeve_2
w
ts2
ts1
s
sleeve1
t
ux mos model
stress mos model
r
Margin of Safety
(> case)
Margin of Safety
(> case)
allowable
allowable
actual
actual
MS
MS
x
sleeve2
shaft
rib1
allowable inter axis length change
R1
t
rib2
R1
r
R2
x
ds1
ds2
B
shaft
cross_section
wf
R3
tw
R4
t1f
Leff
R6
R5
deformation model
t2f
critical_section
critical_detailed
Torsional Rod
wf
linkage
tw
Materials Libraries
In-House, ...
Parts Libraries
In-House*, ...
rib_1
Lo
t
t2f
R2
critical_simple
wf
h
t
tw
R3
E
name
stress_strain_model
mode: shaft torsion
R8
area
b
linear_elastic
hw

tf
cte
area
R9
Torsion
R10
cross section:
effective ring
material
condition
polar moment of inertia, J
al2a
outer radius, ro
al2b
linear elastic model
reaction
allowable stress
R12
Analyzable Product Model
(APM)
* = Item not yet available in toolkit (all others have working examples)

1
R7
h
material
al1
b
t1f
rib_2
effective length, Leff
R11
hw
twist mos model
Margin of Safety
(> case)
1D
allowable
shear modulus, G
al3
2
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
FEA
Ansys
Abaqus*
CATIA Elfini*
MSC Nastran*
MSC Patran*
...
Flap Link Torsional Model
42
Flap Link and Associated Simulation Templates
SysML class diagram (WIP draft)
cls : FlapLink Extensional Model Structure
«context»
Flaplink Model
«paramConstraint»
Flaplink Extensional Model
1
linkage
«assembly»
FlapLink
«paramConstraint»
Flaplink Torsional Model
stressMoSModel
1 deformationModel 1
«paramConstraint»
Extensional Rod
deformationModel
1
«paramConstraint»
Margin Of Safety
«paramConstraint»
Flaplink Plain Strain Model
stressMoSModel
«paramConstraint»
Torsional Rod
1
twistMoSModel
1
stressMoSModel Ux MoS Model
1
1
«paramConstraint»
Margin Of Safety
deformationModel
1
«paramConstraint»
Parameterised FEA Model
43
Test Case
Flap Linkage: Analysis Template Reuse of APM
Linkage Extensional Model (CBAM)
L
A
ts1
L
ts2
s
Sleeve 1
Sleeve 2
Shaft
ds1
F
ds2
A
L
Lo
F
E, A,
Leff
T, ,  x
deformation model
linkage
mode: shaft tension
Flap link (APM)
flap_link
material
condition
effective_length
al1
area, A
al2
linear elastic model
reaction
youngs modulus, E al3
Extensional Rod
(isothermal)
Lo
x1
x2
A
E
F
L
L


w
sleeve_1
stress mos model
t
r
Margin of Safety
(> case)
x
w
sleeve_2
allowable
actual
MS
R1
t
R1
r
allowable stress
R2
x
shaft
cross section
effective length, Leff
cross_section
wf
R3
tw
R4
t1f
R6
R5
t2f
critical_section
critical_detailed
wf
tw
rib_1
R11
hw
b
R7
t1f
h
t
rib_2
t2f
R2
R8
area
b
critical_simple
wf
h
t
material
tw
R3
name
stress_strain_model
reusable idealizations
linear_elastic
E
hw

tf
cte
area
R9
R10
R12
44
Test Case
Flap Linkage: Analysis Template Reuse of ABBs
Linkage Extensional Model (CBAM)
L
A
ts1
L
ts2
s
Sleeve 1
Sleeve 2
Shaft
ds1
F
ds2
A
L
Lo
F
E, A,
Leff
T, ,  x
deformation model
linkage
mode: shaft tension
cross section
material
condition
effective length, Leff
al1
area, A
al2
linear elastic model
reaction
youngs modulus, E al3
Extensional Rod
(isothermal)
Lo
x1
x2
A
E
F
L
L


stress mos model
Margin of Safety
(> case)
Extensional Rod (generic ABB)
y
L
L
Lo
F
material model
E
youngsmodulus,
mv6
cte, 
mv5
T
temperature,
sr1
area,A
r4

F
A
allowable stress
F
E, A,
T, ,  x
One D Linear
Elastic Model
(no shear)
E
To T  T To
reference temperature,
force,F
allowable
actual
MS

smv1
e
T
mv4
t


mv2
e
elastic strain,
mv3
t
thermal strain,

strain,
mv1

stress,
modular reusage
T
temperature change,
r2
undeformed
length,Lo
start,x1
r1
end,x2
L  x2  x1
L  L  Lo

L
L
r3
L
total elongation,
length,L
45
Flap Linkage Instance
with Multi-Directional I/O States
deformation model
linkage
Flap Link #3
Leff
effective length,
5.0 in
mode: shaft tension
critical_cross
_section
shaft
material
condition
reaction
basic
2
1.125 in
area, A
al2
linear elastic model youngs modulus,E al3
steel
30e6 psi
10000 lbs
Extensional Rod
(isothermal)
al1
Lo
L
x1
L
1.43e-3 in
- Input: design details
- Output:
i) idealized design parameters
ii) physical response criteria
x2
A
8888 psi
E

F

Design Verification
description
flaps mid position
stress mos model
Margin of Safety
18000 psi
(> case)
allowable stress
allowable
actual
MS
1.025
example 1, state 1
deformation model
Design Synthesis
- Input: desired physical
response criteria
- Output:
i) idealized design
parameters
(e.g., for sizing), or
ii) detailed design
parameters
5.0 in
effective length, Leff
linkage Flap Link #3
al1
0.555 in2
mode: shaft tension
condition
1.125 in2
shaft
critical_cross
_section
material
linear elastic model
reaction
10000 lbs
steel
basic
area, A
al2
X
youngs modulus, E al3
30e6 psi
Extensional Rod
(isothermal)
Lo
L
x1
L
3.00e-3 in
x2
A
E

F

18000 psi
description
flaps mid position
stress mos model
Margin of Safety
(> case)
18000psi
allowable stress
allowable
actual
MS
0.0
example 1, state 3
46
Flap Link Extensional Model (CBAM)
Example COB Instance in XaiTools (object-oriented spreadsheet)
example 1, state 1
Library data for
materials
Detailed CAD data
from CATIA
Idealized analysis features
in APM
Modular generic analysis templates
(ABBs)
Explicit multi-directional associativity
between design & analysis
47
Outline


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Circuit board examples
– Flap link examples (benchmark tutorial)
» Plus: usage of emerging SysML parametric capabilities
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
» CATIA v5-based airframe example
– Complex idealizations enabled by rich stds.-based product models
» Circuit board warpage using ISO 10303-210 (STEP AP210)
– Diverse-idealization many-body challenge problem
» Chip packages & circuit assembly warpage analysis
» Rich product models + complex & diverse idealizations + advanced meshing
48
X-Analysis Integration Techniques
for CAD-CAE Interoperability
http://eislab.gatech.edu/research/
a. Multi-Representation Architecture (MRA)
3
Analyzable
Product Model
Design Model
4 Context-Based Analysis Model
2 Analysis Building Block
1 Solution Method Model
CBAM
ABB
Solder
Joint
material
body 1
body4
Solder Joint
Solder Joint Plane Strain Model
4 CBAM
C
L

h1
base: Alumina
Epoxy
ABBSMM
PWB
body3
APM ABB
core: FR4
Plane Strain Bodies System
2 ABB

 total height, h c
Component
Solder
Joint
T0
Component
 linear-elastic model
 primary structural
SMM
APM ABB
Analysis Model
PWA Component Occurrence
3 APM
APM
Printed Wiring Assembly (PWA)
Component
b. Explicit Design-Analysis Associativity
body 1
body 4
body
body 2
body 2
PWB
Printed Wiring Board (PWB)
Design Tools
4 CBAM
Analysis Module Catalogs
Analysis Procedures
sj
solder joint
shear strain
range
component
occurrence
c

3 APM

component
total height
hc
linear-elastic model
[1.1]
total thickness
Ubiquitous Analysis
Commercial
Design Tools
Product
Model
(Module Usage)
Selected Module
Solder Joint Deformation Model
MCAD
ECAD
1.25
length 2 +
pwb
Idealization/
Defeaturization
Component
Solder Joint
solder joint
solder
hs
linear-elastic model
[1.1]
detailed shape
[1.2]
linear-elastic model
[2.1]
Ts
average
Ansys
CAE
PWB
APM  CBAM  ABB SMM
primary structural material
Tc
Ls
[1.2]
rectangle
Commercial
Analysis Tools
Plane Strain
Bodies System
T0
Lc
Physical Behavior Research,
Know-How, Design Handbooks, ...
1 SMM
deformation model
approximate maximum
inter-solder joint distance
primary structural material
ABB SMM
2 ABB
Fine-Grained Associativity
Ubiquitization
(Module Creation)
3
plane strain bodyi , i = 1...4
geometryi
materiali (E,  ,  )
Informal Associativity Diagram
Solution Tools
c. Analysis Module Creation Methodology
To
bilinear-elastoplastic model
[2.2]
a
L1
h1
stress-strain
model 1
T1
L2
h2
stress-strain
model 2
T2
geometry model 3
stress-strain
model 3
T3
 xy, extreme, 3
T sj
 xy, extreme, sj
Constrained Object-based Analysis Module
Constraint Schematic View
Abaqus
49
Multi-Representation Architecture (MRA) Summary
Characteristics of Component Representations

Solution Method Models (SMMs)
– Packages solution tool inputs, outputs, and control as integrated
objects
– Automates solution tool access and results retrieval via tool agents
and wrappers

Analysis Building Blocks (ABBs)
– Represents analysis concepts using object and constraint graph
techniques
– Acts as a semantically rich 'pre-preprocessor' and 'postpostprocessor' model.
» ABB instances create SMM instances based on solution
method considerations and receive results after automated
solution tool execution
50
Multi-Representation Architecture (MRA) Summary
Characteristics of Component Representations (cont.)

Analyzable Product Models (APMs)
– Represent design aspects of products and enables connections
with design tools
– Support idealizations usable in numerous analysis models
– Have possibly many associated CBAMs

Context-Based Analysis Models (CBAMs)
– Contain linkages explicitly representing design-analysis
associativity, indicating usage of APM idealizations
– Create analysis models from ABBs and automatically connects
them to APM attributes
– Represent common analysis models as automated, predefined
templates
– Support interaction of analysis models of varying complexity and
solution method
– Enable parametric design studies via multi-directional input/output
(in some cases)
51
http://eislab.gatech.edu/pubs/conferences/2003-asme-detc-peak/
Preliminary Characterization of CAD-CAE Interoperability Problem
Estimated quantities for all structural analyses for one complex system
Idealization & Associativity Relations
Other Model Abstractions (Patterns)
Design Models
O(10K) relevant parts
3
Analyzable
Product Model
Analysis Models
O(1K) template types and
O(10K) template instances
4 Context-Based Analysis Model
O(100) building blocks
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
Solder
Joint
Component
i
ABB
SMM
APM ABB
Component
T0
Solder Joint
PWB
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
O(100) tools
Engineering Information Systems Lab  eislab.gatech.edu
Solution Tools
52
Preliminary Characterization of CAD-CAE Interoperability Problem
Estimated quantities for all structural analyses for one complex system
(continued)
CAD-CAE associativity relations are represented
as APM-ABB relations, APMABB , inside CBAMs
3
Analyzable
Product Model
O(10K) template instances containing
O(1M) associativity relations
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
Solder
Joint
Component
i
ABB
SMM
APM ABB
Component
Solder Joint
PWB
T0
body 1
body4
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
Solution Tools
associativity gap = computer-insensible relation
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
 ~1M gaps
53
A Preliminary
Mapping ...
Performance
Requirements
Analysis abstract model
Product
identification
Source: Michel Vrinat (Feb. 2005 Draft)
A CAE Data Model for Simulation Frameworks
www.cpd-associates.com
Functional
specifications
Rules &
practices
Analysis
context
Engineering
knowledge
Product
definition
CPDA Notional
CAE Data Model
Reference
geometry
Materials
database
Load
cases
database
Analysis
assumptions
Boundaries
conditions
rules
Analysis
physical model
Idealized
model
Materials
characteristics
Loads &
B.C.
definition
Reporting
templates
Analysis
execution model
CAD
model
Input
data
Multi-Representation
Architecture (MRA)
3
Output
data
Analyzable
Product Model
Solver
selection
Report
format
4 Context-Based Analysis Model
APM
2 Analysis Building Block
Printed Wiring Assembly (PWA)
1 Solution Method Model
CBAM
Solder
Joint
Component
i
ABB
SMM
APM ABB
Component
Solder Joint
T0
body 1
body4
PWB
ABBSMM
body3
body 2
Printed Wiring Board (PWB)
Design Tools
© 1993-2001 GTRC
Engineering Information Systems Lab  eislab.gatech.edu
Solution Tools
54
Multi-Representation Architecture (MRA) Summary
Overall Characteristics






Addresses information-intensive nature
of CAD-CAE integration
Breaks design-analysis integration gap
into smaller subproblems (patterns)
Flexibly supports different design & analysis methods & tools
Based on modular, reusable information building blocks
Defines methodology for creating specialized,
highly automated analysis tools to support product design
Represents analysis intent as tool-independent knowledge
55



Multi-Representation Architecture (MRA) Summary
Overall Characteristics (cont.)
Multiple representations required by:
– Many:Many cardinality
– Reusability & modularity
Self-Test: Consider impact of removing a representation
Similar to “software design patterns”
for CAD-CAE domain
– Identifies patterns between CAD and CAE
(including new types of objects)
– Captures explicit associativity
– Other needs: conditions, requirements, next-higher analysis
Distinctive CAD-CAE associativity needs
– Multi-fidelity, multi-directional capabilities
56
Outline


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Circuit board examples
– Flap link examples (benchmark tutorial)
» Plus: usage of emerging SysML parametric capabilities
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
» CATIA v5-based airframe example
– Complex idealizations enabled by rich stds.-based product models
» Circuit board warpage using ISO 10303-210 (STEP AP210)
– Diverse-idealization many-body challenge problem
» Chip packages & circuit assembly warpage analysis
» Rich product models + complex & diverse idealizations + advanced meshing
57
Flexible High Diversity Design-Analysis Integration
Phases 1-3 Airframe Examples:
“Bike Frame” / Flap Support Inboard Beam
Design Tools
strength model
product structure
(channel fitting joint) bolt BLE7K18
head
end pad
fitting
hole
radius, r1
0.4375 in
radius, ro
0.5240 in
1.267 in
eccentricity, e
2.088 in
height, h
0.0000 in
radius, r2
thickness, tb
0.307 in
thickness, tw
0.310 in
r2
tb
tw
a
1.770 in
angled height, a
material
IAS Function
Ref D6-81766
h
hole
wall
e
te
0.5 in
thickness, te
Channel Fitting
Static Strength Analysis
r1
r0
b
2.440 in
width, b
mode: (ultimate static strength)
base
MCAD Tools
CATIA v4, v5
Modular, Reusable
Template Libraries
rear spar fitting attach point
analysis context
max allowable ultimate stress, Ftu
67000 psi
Ftu
65000 psi
diagonal brace lug joint
analysis context
product structure (lug joint)
allowable ultimate long transverse stress, FtuLT
FtuLT
57000 psidiameters
lugs max allowable yield stress, Fty
LF[tyk] k = norm
L [ j:1,n ] max allowable
52000 psi
F diameter
j = top long transverse stress,
normaltyLT
, Dnorm FtyLT Dk
hole
lugj shear
39000 psi
max allowable
stress, Fsu oversize diameter,
D
F
over
condition:
mode (ultimate static strength)
load, Pu
Pu
material
max allowable ultimate stress,
jm FtuL
r1
Plug
Program
Plug joint
L29 -300
Part
Outboard TE Flap, Support
No 2;
n
8.633
K 123L4567
Inboard
Beam,
objective
deformation model
Lug Axial Ultimate
Strength Model
D
0.7500 in
5960
effective width,
W Ibs
1.6000 in
MSwall
9.17
BDM 6630
MSepb
t
MSeps
e
W
5.11
9.77
Kaxu
0.7433
Paxu
14.686 K
7050-T7452, MS 7-214
heuristic: overall fitting factor, Jm 1
Max. torque brake setting
detent 30, 2=3.5º
condition
su
0.067 in/in
plastic ultimate strain, epu
epu
2
0.35 in
thickness,
size,n ultimate strain long transverse,
epuLT t 0.030 in/in
plastic
epuLT
10000000
psi
edge margin,
e
0.7500 E
in
young modulus of elasticity, E
2G7T12U (Detent 0, Fairing Condition 1)
Analysis Modules (CBAMs)
of Diverse Feature:Mode, & Fidelity
Plug joint
F tuax
Channel Fitting67 Ksi
Template
4.317 K
Static Strength Analysis
Dataset
XaiTools
1 of 1
Bulkhead Fitting Joint
Feature
Margin
of Safety
(> case)
actual
estimated axial ultimate strength
allowable
MS
2.40
Program
L29 -300
Part
Outboard TE Flap, Support No 2;
Inboard Beam, 123L4567
Feature
Diagonal Brace Lug Joint
Template Lug Joint
Axial Ultimate Strength Model
Dataset
j = top lug
k = normal diameter
(1 of 4)
1.5D
Image API
(CATGEO);
VBScript
Analyzable
Product Model
XaiTools
Lug:
Axial/Oblique;
Ultimate/Shear
Fasteners DB
FASTDB-like
General Math
Mathematica
In-House
Codes
1.5D
Fitting:
Bending/Shear
Materials DB
MATDB-like
Analysis Tools
3D
Assembly:
Ultimate/
FailSafe/Fatigue*
FEA
Elfini*
* = Item not yet available in toolkit (all others have working examples)
58
Lug Template Applied to an Airframe Analysis Problem
CBAM constraint schematic - instance view
CAD-CAE Associativity
(idealization usage)
lugs
diagonal brace lug joint
analysis context
L [ j:1,n ]
j = top
hole
lugj
product structure (lug joint)
Geometry
2
size,n
deformation model
diameters
L [ k] k = norm
Dk
normal diameter, Dnorm
oversize diameter, Dover
mode (ultimate static strength)
thickness, t
0.35 in
edge margin, e
0.7500 in
material
Plug joint
condition
e
W
max allowable ultimate stress, FtuL
Plug joint
Plug
67 Ksi
Boundary Condition Objects
Margin of Safety
(> case)
(links to other analyses)
actual
Kaxu
0.7433
Paxu
14.686 K
F tuax
Paxu  Kaxu (
4.317 K
n
8.633 K
objective
DM 6630
t
Material Models
7050-T7452, MS 7-214
r1
D
0.7500 in
effective width, W 1.6000 in
Max. torque brake setting
detent 30, 2=3.5º
Lug Axial Ultimate
Strength Model
W
 1) DtFtuax
D
Solution Tool
Interaction
estimated axial ultimate strength
allowable
MS
Requirements
Model-based Documentation
2.40
Program
L29 -300
Part
Outboard TE Flap, Support No 2;
Inboard Beam, 123L4567
Feature
Diagonal Brace Lug Joint
Template Lug Joint
Axial Ultimate Strength Model
Dataset
j = top lug
k = normal diameter
(1 of 4)
Legend: Annotations highlight model knowledge capture capabilities. Other notation is COB constraint schematics notation.
59
Explicit Capture of Idealizations
(part-specific template adaptation in bike frame case)
2
Detailed
Features/Parameters
Tagged in CAD Model
(CATIA)
Idealized Features
in CAE Model
zf
yf
te
yf
yf
xf
zf
cavity3.base.minimum_thickness
xf
xf
b
cavity3.width, w3
zf
yf
cavity 3
rib9
xf
1
rib8
= t8,t 9
rib8.thickness
rib9.thickness
Tension Fitting Analysis
i - Relations between idealized CAE parameters and detailed CAD parameters
1 : b = cavity3.inner_width + rib8.thickness/2 + rib9.thickness/2
2 : te = cavity3.base.minimum_thickness
60
Bike Frame APM Constraint Schematic
Bulkhead Fitting Portion (partial)
bike_frame
bulkhead assy attach,
point fitting
end_pad
width, b
base
hole
Idealized
features
(std. APM
template)
wall
cavity 3
base
...
inner_width
rib 8
rib 9
thickness, te
min_thickness
thickness, t8
2
Detailed
design
features
1
thickness, t9
Idealization Relations
- Reuse from standard APM fitting template
or adapt for part feature-specific cases (as here)
61
Appendix B: Required Standard Analysis Methods
(continued)
K3  f (r1,b, h)
fse 
P
2r0te
fbe 
C1
P
2
hte
Common Structures Workstation (CSW)
Request for Information
June 2000, The Boeing Company.
Appendix B: Required Standard Analysis Methods
Available (by permission) at:
http://eislab.gatech.edu/projects/boeing-psi/2000-06-csw-rfi/
62
Fitting Analysis Template Applied to “Bike Frame” Bulkhead
CBAM constraint schematic - instance view
18 associativity relations
bulkhead fitting attach point
analysis context
product structure
(channel fitting joint) bolt LE7K18
end pad
fitting
head
hole
mode: (ultimate static strength)
radius, r1
0.4375 in
radius, ro
0.5240 in
width, b
2.440 in
eccentricity, e
1.267 in
0.5 in
thickness, te
2.088 in
height, h
base
material
condition:
thickness, tb
0.307 in
thickness, tw
0.310 in
angled height, a
1.770 in
r0
b
Channel Fitting
Static Strength Analysis
e
te
IAS Function
Ref DM 6-81766
r2
tb
K3  f (r1,b, h)
tw
a
fbe 
max allowable ultimate stress, Ftu
67000 psi
allowable ultimate long transverse stress, FtuLT
65000 psi
max allowable yield stress, Fty
57000 psi
Fty
max allowable long transverse stress, FtyLT
52000 psi
max allowable shear stress, Fsu
FtyLT
39000 psi
plastic ultimate strain, epu
0.067 in/in
plastic ultimate strain long transverse, epuLT
0.030 in/in
load, Pu
heuristic: overall fitting factor, Jm
0.0000 in
radius, r2
young modulus of elasticity, E
2G7T12U (Detent 0, Fairing Condition 1)
r1
h
hole
wall
strength model
10000000 psi
5960 Ibs
1
Ftu
fse 
P
2
hte
C1
P
2r0te
FtuLT
MSwall
9.17
MSepb
5.11
MSeps
9.77
Fsu
epu
epuLT
E
Pu
jm
Program
L29 -300
Part
Outboard TE Flap, Support No 2;
Inboard Beam, 123L4567
Feature
Bulkhead Fitting Joint
Template Channel Fitting
Static Strength Analysis
Dataset
1 of 1
63
Bike Frame Bulkhead Fitting Analysis
COB-based Analysis Template (CBAM) - in XaiTools
Detailed CAD data
from CATIA
Library data for
materials & fasteners
Idealized analysis features
in APM
Modular generic analysis templates
(ABBs)
Explicit multi-directional associativity
between detailed CAD data
& idealized analysis features
64
Target Situation:
Design driven by idealized analysis features
Design Model
(in CATIA v5)
Idealized Features
(to scale in CATIA v5)
Idealized bulkhead attach point fitting
Idealized rear spar attach point fitting
Idealized diagonal brace lug joint
b
c
R
axial direction

D
 = f( c , b , R )
W = f( R , D ,  )
e
65
Design Starter Template in CATIA v5
slanted cavity with analysis template-based idealized channel fitting
aaa_parent_assembly
Parameters
part_number
material
…
Primary Directionality
xxxd_attach_point_origin_x0
Design
Parameters
r33
xxxd_attach_point_cavity_angle
…
xxxi_fitting_casing_endpad_height
Idealized
Parameters
xxxd_attach_point_cavity
…
xxxi_fitting_casing
…
Idealized
Bodies & Features
r11
xxxi_fitting_casing_endpad_effective_hole_offset
…
Design Starter
Parts & Features
xxxi_fitting_casing_basewall_thickness
r24
Sketch.13
Angle.12
Angle
Hole.3
Sketch.15
Offset.54
Offset
Sketch.1
end_pad_height.20
Body.2
Sketch.2
t_b.43
Offset
r10
66
Outboard beam APM
outboard_beam
Parameters
part_number
material
inter_attach_point_length
…
bulkhead_attach_point_ origin_x0
bulkhead_attach_point_cavity_angle
r33
…
bulkhead_fitting_casing_endpad_height
CATIA v5 Implementation
bulkhead_fitting_casing_basewall_thickness
r11
r210
bulkhead_fitting_casing_endpad_effective_hole_offset
bulkhead_attach_point_cavity
…
bulkhead_fitting_fitting_casing
…
Parameters (cont.)
r24
Sketch.13
Angle.12
Angle
Hole.3
Sketch.15
Offset.54
Offset
Sketch.1
end_pad_height.20
Body.2
Sketch.2
t_b.43
Offset
r10
rear_spar_1_attach_point_origin_x0
rear_spar_1_attach_point_cavity_angle
…
r83
r274
rear_spar_1_fitting_casing_endpad_height
…
r61
rear_spar_1_fitting_casing_basewall_thickness
r263
rear_spar_1_fitting_casing_endpad_effective_hole_offset
rear_spar_1_attach_point_cavity
…
rear_spar_1_fitting_casing
…
Parameters (cont.)
r212
r74
Sketch.63
Angle.62
Angle
Hole.53
Sketch.65
Offset.104
Offset
Sketch.51
end_pad_height.70
Body.52
Sketch.52
t_b.93
Offset
r60
connector_ segment_origin_x0
connector_segment_length
…
connector_ segment_angle
r183
connector_segment
Angle.62
Angle
Sketch.163
Sketch.165
Offset.204
r184
…
…
Sketch.63
Offset
67
Outline


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Circuit board examples
– Flap link examples (benchmark tutorial)
» Plus: usage of emerging SysML parametric capabilities
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
» CATIA v5-based airframe example
– Complex idealizations enabled by rich stds.-based product models
» Circuit board warpage using ISO 10303-210 (STEP AP210)
– Diverse-idealization many-body challenge problem
» Chip packages & circuit assembly warpage analysis
» Rich product models + complex & diverse idealizations + advanced meshing
68
R
STEP AP210 (ISO 10303-210)
Domain: Electronics Design
~950 standardized concepts (many applicable to other domains)
Development investment: O(100 man-years) over ~10 years
Configuration Controlled Design of Electronic Assemblies,
their Interconnection and Packaging
Interconnect
Assembly
Printed Circuit Assemblies
(PCAs/PWAs)
Product Enclosure
Die/Chip
Packaged Part
Printed Circuit
Substrate (PCBs/PWBs)
Die/Chip
2003-04 - Adapted from 2002-04 version by Tom Thurman, Rockwell-Collins
Package
External Interfaces
69
R
STEP AP210 Models
Requirements Models
• Design
• Constraints
• Interface
• Allocation
Functional Models
•
•
•
•
•
Functional Unit
Interface Declaration
Network Listing
Simulation Models
Signals
Component / Part Models
•
•
•
•
•
•
Analysis Support
Package
Material Product
Properties
“White Box”/ “Black Box”
Pin Mapping
Assembly Models
Interconnect Models
• User View
• Design View
• Component Placement
• Material product
• Complex Assemblies with
Multiple Interconnect
GD & T Model
• Datum Reference Frame
• Tolerances
•
•
•
•
•
Configuration Mgmt
Identification
Authority
Effectivity
Control
Net Change
•
•
•
•
•
User View
Design View
Bare Board Design
Layout templates
Layers
planar
non-planar
conductive
non-conductive
70
Rich Features in AP210: PWB layout
AP210 STEP-Book Viewer - www.lksoft.com
71
Rich Features in AP210: Via/Plated Through Hole
Z-dimension details
…
72
Rich Features in AP210: PCB Assembly: 3D & 2D
STEP-Book AP210 Browser - www.lksoft.com
PDES Inc. EM Pilot
Test Case:
Cable Order Wire
(COW) Board
73
Rich Features in AP210: Electrical Component
The 3D shape is generated from these “smart features” which
have electrical functional knowledge. Thus, the AP210-based
model is much richer than a typical 3D MCAD package model.
210 can also support the detailed design of a package itself
(its insides, including electrical functions and physical
behaviors).
74
3D Mechatronics
via AP210
JMID-210
75
IDA-STEP Electronics:
AP210 Interfaces
System / Format
E-CAD
Cadence / Allegro
Cadence / OrCAD
Mentor Graphics / BoardStation
Mentor Graphics / PADS
Mentor Graphics / Expedition
Zuken / Visula (CADIF)
Zuken / CR5000
CadSoft / EAGLE
Manufacturing
GERBER
Valor / ODB++
Others
EDIF 2 0 0
VHDL
2005-03-17
Pre-processor
Export
PCB & PCA
PCB & PCA
PCB & PCA
PCB & PCA
planned
PCB & PCA
via CADIF?
PCB & PCA
www.ida-step.net
Post-processor
Import
PCB & PCA
PCB & PCA
PCB & PCA
PCB only
PCB only
Func. Netlist
Func. Netlist
Func. Netlist
Func. Netlist
76
Circuit Board Design-Analysis Integration
Electronic Packaging Examples: PWA/B
Design Tools
y
mv6
reference temperature, To
E
T  T L To
A
ts1
ts2

s
Sleeve 1
Shaft
Sleeve 2
smv1
ds1
force, F
area, A
ECAD Tools
Mentor Graphics,
Zuken, …
A
r4
F
A
Leff
linkage

mv4
L
F
E, A, 
T, ,  x
One D Linear
Elastic Model
(no shear)
mv5
sr1
temperature, T
L
Lo
F
material model
youngs modulus, E
cte, 
ds2
e
T
t


elastic strain, e
mv2
thermal strain, t
mv3
strain,
mv1
effective length, Leff
r2
undeformed length, Lo
start, x1
end, x2
cross section:
effective ring
L  L  Lo
condition
r1
L  x2  x1
material

polar moment of inertia, J
L
r3 ro
outer radius,
L
linear elastic model
Margin of Safety
(> case)
allowable
al3
total elongation,L
length, L
allowable stress
twist mos model
al2a
al2b
shear modulus, G
reaction
deformation model
Torsional Rod
stress,al1

temperature change,T
mode: shaft torsion
Lo

Modular, Reusable
Template Libraries
1
2
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
STEP AP210‡
GenCAM**,
PDIF*
PWB Stackup Tool
XaiTools PWA-B
Analysis Modules (CBAMs)
of Diverse Mode & Fidelity
Analyzable
Product Model
XaiTools
PWA-B
Solder Joint 1D,
Deformation* 2D,
3D
XaiTools Analysis Tools
PWA-B
General Math
Mathematica
FEA Ansys
PWB
Warpage
1D,
2D
Laminates DB
Materials DB
‡ AP210 Ed2 WD8
* = Item not yet available in toolkit (all others have working examples)
PTH
1D,
Deformation 2D
& Fatigue**
** = Item available via U-Engineer.com
77
Automating Complex Idealizations via AP210
Design Model - AP210
Simulation Template
Analytical Model
length
Top conductive layer
CBAM
ABB System
width
APM
…
Top view
showing “effective property” grid regions
across top idealized layer
Effective material
properties
idealization
…
thickness
Cross-section view
showing “effective property” grid region
across each idealized layer
Idealization grid
Each grid region:
multi-layer shell (a 2.5D analytical continuum)
Solver Model
SMM - FEA Mesh Model
78
Initial Validation Results
Simulation Results
Click on icon for animation
(deflection vs. temperature change)
Physical Measurements in
TherMoiré oven chamber
www.AkroMetrix.com
Experimental Results
SMM - FEA Mesh Model
200
25
100
50
0
-50
-100
Scale (mils)
Temperature (C)
150
0C
20
15
10
5
0
Model
Exp't
79
Outline


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Circuit board examples
– Flap link examples (benchmark tutorial)
» Plus: usage of emerging SysML parametric capabilities
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
» CATIA v5-based airframe example
– Complex idealizations enabled by rich stds.-based product models
» Circuit board warpage using ISO 10303-210 (STEP AP210)
– Diverse-idealization many-body challenge problem
» Chip packages & circuit assembly warpage analysis
» Rich product models + complex & diverse idealizations + advanced meshing
80
Diverse-Idealization Many-Body Challenge Problem:
Automated PCA warpage analysis
rich product models + complex idealizations + advanced meshing
cross-section view
c1. component designs / libraries
(e.g., chip packages including
plastic ball grid array (PBGA) )
exploded view
analytical assembly view
c3. ABB system model
(133 analytical continuum bodies)
c2. Idealized design (APM)
and simulation template (CBAM)
d1. Combined
ABB system model
side view
ECAD layout view
idealization preparation view
a1. PCA design
including b1. PCB design
b2. Idealized PCB design (APM)
and simulation template (CBAM)
PCB = printed circuit board (bare board)
e1. Combined FEA mesh model
(est. ~5K elements avg. per component)
b3. ABB system model
(36 analytical multi-layer shell bodies)
PCA = printed circuit assembly = PCB plus components and so on
81
Flexible High Diversity Design-Analysis Integration
Electronic Packaging Examples: Chip Packages/Mounting
Shinko Electric Project: Phase 1 (production usage)
Design Tools
y
mv6
mv5
reference temperature, To
E
T  T L To
A
ts1
ts2
Shaft
Sleeve 2
smv1
ds1
area, A
r4
F

A
A
Leff
linkage
e

s
Sleeve 1
force, F
mv4
L
F
E, A, 
T, ,  x
One D Linear
Elastic Model
(no shear)
sr1
temperature, T
L
Lo
F
material model
youngs modulus, E
cte, 
ds2
T
t


mv2
elastic strain, e
mv3
thermal strain, t
mv1
strain,
effective length, Leff
Prelim/APM Design Tool
XaiTools ChipPackage
start, x1
end, x2
cross section:
effective ring

r2
L  L  Lo
condition
r1
L  x2  x1
material
polar moment of inertia, J
L
r3 ro
outer radius,
L
linear elastic model
reaction
allowable stress
twist mos model
Margin of Safety
(> case)
allowable
Torsional Rod
stress,al1

temperature change,T
mode: shaft torsion
undeformed length, Lo
deformation model
al2a
al2b
shear modulus, G
al3
total elongation,L
length, L
Lo

1
2
Modular, Reusable
Template Libraries
J
r

G

T
stress mos model
allowable
twist
Margin of Safety
(> case)
allowable
actual
actual
MS
MS
Analyzable
Product Model
PWB DB
Analysis Modules (CBAMs)
of Diverse Behavior & Fidelity
Thermal
Resistance
Analysis Tools
XaiTools
General Math
ChipPackage
Mathematica
FEA
Ansys
3D
XaiTools
Materials DB*
Thermal
Stress
EBGA, PBGA, QFP
PKG

Basic
3D**
Chip
Cu
Ground
** = Demonstration module
Basic
Documentation
Automation
Authoring
MS Excel
82
Example Chip Package Products
Source: www.shinko.co.jp
Plastic Ball Grid Array (PBGA) Packages
Wafer Level Package (WLP)
Quad Flat Packs (QFPs)
Glass-to-Metal Seals
System-in-Package (SIP)
83
Example Chip Package Idealizations (PBGA)
Idealization for solder-joint/thermal ball
[ Outer Balls ]
Average Thermal Conductivity
Vertical Direction
v: v = Vff+(1-Vf )m [W/mK]
Horizontal Direction h: 1/h = Vf/f+(1-Vf )/m [W/mK]
y2 y1
Where:
f: thermal conductivity of solder ball [W/mK]
m: thermal conductivity of air [W/mK]
Vf: volume ratio of solder ball
x1
Idealization for thermal via
% Ball Area = (Pi * (ball diameter / 2)^ 2) / (x2 * y2 - x1 * y1 )
x2
[ Inner Balls (Thermal Balls) ]
r : a radius of ball
l : a side length of square
x : number of balls
y : number of squares
r
+
l
x r
Thermal Conductivity
2
(Ball value in all directions)
y

l
r
r
=
5 - 10 Balls
Equation for Total
Sectional Via Area
R r

S  R 2  r 2  n
l
-
S : total section area of vias
R : outer 
r : inner 
n : number of via
Via + Air
=
Air
Via
Courtesy of Shinko - see [Koo, 2000]
84
COB-based Analysis Template
Typical Highly Automated Results
Analysis Module Tool
COB =
constrained
object
Auto-Created
FEA Inputs
(for Mesh Model)
FEA
Temperature
Distribution
Thermal Resistance
vs.
Air Flow Velocity
85
Chip Package Thermal Resistance
Analysis Template (FEA-based CBAM)
thermal model
components
chip_package_
L[i:1,n]
product_assembly
Variable Topology
FEA Model
width
W
cavity_width
CW
length
L
cavity_length
CL
height
H
depth
singular_mat
D
base_mat
isotropic_thermal_model
r1
kx
ky
composite_mat
mixed_mat
orthotropic_thermal_model
power
P
heat_generation_rate
q
convection_coefficient_1 L[j:1,m]
hc
convection_coefficient_2 L[j:1,m]
hp
convection_coefficient_3 L[j:1,m]
condition
kz
hb
temperature
Ta
air_flow_velocity L[j:1,m]
Tmax
Tmin
PTmax
ave PST
ave BTST
ave BBST
avel
Thermal Resistance
Model
P
Theta ja
Ta
Theta jc
Tmax
PTmax
86
Chip Package
Thermomechanical Analysis Case
Reducing days to hours; Increasing simulation intensity
Decomposition
ABB Model consisting 182 Input bodies
RMM consisting 9056 Decomposed bodies
FEA SMM
87
Outline


Characterizing design-analysis integration (DAI) challenges
Technique and application highlights
– Multi-representation architecture (MRA),
analyzable product models (APMs), ...
– Circuit board examples
– Flap link examples (benchmark tutorial)
» Plus: usage of emerging SysML parametric capabilities
– Summary and mapping to CPDA CAE Data Model

Recent & current MRA-based work using APMs
– Model-based design (simulation template-driven design)
» CATIA v5-based airframe example
– Complex idealizations enabled by rich stds.-based product models
» Circuit board warpage using ISO 10303-210 (STEP AP210)
– Diverse-idealization many-body challenge problem
» Chip packages & circuit assembly warpage analysis
» Rich product models + complex & diverse idealizations + advanced meshing
88
Technique Summary

Tool-independent model interoperability
– Application focus: simulation template methodology

Multi-representation architecture (MRA)
(including analyzable product models (APMs):
– Addresses fundamental gaps:
» Idealizations & CAD-CAE associativity:
multi-fidelity, multi-directional, fine-grained
– Based on information & knowledge theory
– Structured, flexible, and extensible

Improved quality, cost, time:
– Capture engineering knowledge in a reusable form
– Reduce information inconsistencies
– Increase analysis intensity & effectiveness
» Reducing modeling cycle time by 75% (production usage)
89
GIT PLM Center of Excellence
http://www.marc.gatech.edu/plm/
Sample technique focus areas

Composable objects
 Knowledge graphs, template methods, next-gen SysML, ...

Simulation knowledge methodologies
 Model-based design, templates, design-analysis interoperability, ...

Standards-based engineering frameworks
 Multi-language rich product models (STEP, XML, UML, OWL, ...), ...
Sample application focus areas

Mechatronics & systems of systems (SoS)
 Electronics, microsystems, space systems, E/MCAD-CASE interop.,...

Factory design & simulation
 Semiconductor fabs, ...
90
For Further Information ...

Contact: [email protected]

Web site: http://eislab.gatech.edu/
– Publications, project overviews, tools, etc.
– See: X-Analysis Integration (XAI) Central
http://eislab.gatech.edu/research/XAI_Central.doc

XaiTools home page: http://eislab.gatech.edu/tools/XaiTools/

Prototype ESB: U-Engineer.com
– See “Internet-based Engineering Service Bureaus (ESB) Techniques”
™
at http://eislab.gatech.edu/projects/proam/
– Internet-based self-serve analysis
– Analysis module catalog for electronic packaging
– Highly automated front-ends to general FEA & math tools
91

similar documents