Coculture With Embryonic Stem Cells Improves Neural

Report
Coculture with Embryonic Stem Cells Improves Neural Differentiation
of Adipose Tissue-Derived Stem Cells
Arash Javeri MD, PhD, Masoumeh Fakhr Taha PhD, Leila Bahmani MSc
Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
Introduction: Adipose tissue has been identified as an accessible and rich source of stem cells with multipotential differentiation capacity. So far, several research groups have
reported neural differentiation of adipose tissue-derived stem cells (ADSCs ) in low-serum or serum-free media with a cocktail of neural inducing factors. In the present study,
we evaluated the effectiveness of a medium containing a synthetic serum replacement (KoSR) for neural differentiation of mouse ADSCs, and compared this medium with lowserum condition. Moreover, we evaluated neural differentiation of the ADSCs following indirect coculture with ES cells.
Materials and Methods: ADSCs from the inguinal adipose tissue of 8 to10-week old NMRI
mice were isolated using 2 mg/ml collagenase A and were characterized (Fig. 1). At first,
neural differentiation of the ADSCs was induced under two different culture conditions,
DMEM plus 4% FBS and DMEM plus 15% KoSR, with or without β-ME. Then, thirdpassaged ADSCs were indirectly cocultured with ES cells, and the expression levels of
pluripotency markers, mesenchymal stem cell markers, and proliferating cell nuclear antigen
were assessed in the cocultured ADSCs. Moreover, the control and cocultured ADSCs were
differentiated to neuron with or without RA treatment.
Figure 3- The effect of two-day coculture with the ES cells on the expression of PCNA,
Sox2, OCT4, CD73 and CD105 mRNAs in the control and cocultured ADSCs (A) . (B) and
(C) QPCR analysis of PCNA, CD73, CD105, Sox2 and OCT4 mRNAs expression in the
control and cocultured ADSCs.
Figure 4- RT-PCR and qPCR
analysis of some neuron-specific
genes in the control and cocultured
ADSCs which were differentiated
at the presence or absence of 10-8
M RA, 2
weeks
after neural
induction.
Figure 1- Characterization of the ADSCs by flow cytometry analysis. ADSCs expressed
CD29, CD44, and CD105 as the mesenchymal stem cell markers, while they were mostly
negative for CD31 (endothelial marker), CD45 and CD11b (hematopoietic markers).
Results: The current study showed that KoSR-containing medium without any additional
factor induces neural differentiation of the ADSCs. Two-week differentiated ADSCs
expressed several neuron-specific markers, and RA treatment improved neural differentiation
of the ADSCs (Fig. 2). The expression levels of OCT4, Sox2 and PCNA were upregulated in
the cocultured ADSCs (Fig. 3). Moreover, coculture with the ES cells significantly improved
Figure 5- Immunocytochemical and western blot analysis of two-week differentiated
neural differentiation of the ADSCs. Treatment of the cocultured ADSCs with RA diminished
ADSCs. The control and cocultured ADSCs were differentiated in the KoSR-containing
the expression of neural maturation markers (Figs. 4 and 5).
medium at the presence or absence of 10-8 M RA. Scale bar: 25 µm.
Conclusion: Our findings are indicating that mouse ADSCs are capable of neural
development in KoSR-containing media. Moreover, coculture with the ES cells efficiently
improves neural differentiation of the ADSCs. Probably, secretion of cytokines,
chemokines, interleukins and some growth factors by ES cells have a positive effect on the
late maturation of ADSC-derived neurons. Non-contact coculture with the ES cells may be
used as an efficient strategy to improve differentiation potential of adult stem cells for
developmental studies and regenerative medicine.
Figure 2- The expression of some neuron-specific genes in the freshly isolated stromal
Reference: Bahmani L, Taha MF, Javeri A. Neural differentiation of adipose tissue-
vascular fraction (SVF), third-passaged ADSCs (ADSC P3), brain tissue as the positive
derived stem cells is improved following coculture with embryonic stem cells.
control, and two-week differentiated ADSCs which were treated with different concentrations
Neuroscience 2014; 272: 229-239.
of RA.

similar documents