NCSU COAWST Nowcast/Forecast Modeling System

Report
NCSU COAWST Nowcast/Forecast
Modeling System:
Implementation and Examples
Ruoying He1,Joe Zambon1, Zhigang Yao1,
Jill Nelson1, John Warner2
1.
Dept. of Marine, Earth & Atmospheric Sciences
North Carolina State University, Raleigh, NC
2.
US Geological Survey, Woods Hole, MA
MARACOOS Modeling Meeting
22-July 2013
COAWST
Coupled Ocean– Atmosphere – Wave – Sediment Transport
Modeling System to investigate variability of coastal
environments
C = Coupled
O = Ocean
A = Atmosphere
W = Wave
ST = Sediment Transport
MCT
v 2.6.0
http://www-unix.mcs.anl.gov/mct/
ROMS
svn 455
http://www.myroms.org/
WRF
v 3.4
http://www.wrf-model.org/
SWAN
v 40.81
http://vlm089.citg.tudelft.nl/swan
CSTMS
http://woodshole.er.usgs.gov/projectpages/sediment-transport/
Modeling System
Latitude
ATMOSPHERE
WRF wind speed
Longitude
Hwave, Lmwave, Lpwave, Dwave,
Tpsurf, Tmbott, Qb,
Dissbot, Disssurf, Disswcap,
Ubot
ROMS SST
MCT
SWAN Hsig
us, vs, h, bath, Z0
OCEAN
WAVE
NCSU COAWST-ROMS Configuration
(USeast coast - Gulf of Mexico - Caribbean)
Atmospheric forcing
Model resolution : 7~10 km
Model Grid points : 482x402
Vertical Layer
: 36
River
USGS River discharge
Tides (7 Constituents)
OTIS 1/12°Atlantic Ocean
(M2, S2, N2, K2, O1, K1, Q1)
Topography
2-Minute Gridded Global
Relief Data (ETOPO2v2)
Initial and boundary
1/12°Global HYCOM NCODA
Solutions
NCSU COAWST-SWAN Configuration
(USeast coast - Gulf of Mexico - Caribbean)
Atmospheric forcing
Model resolution : 7~10 km
Model Grid points : 482x402
Initial and boundary
1/2° WW III Solutions
Topography
2-Minute Gridded Global
Relief Data (ETOPO2v2)
NCSU COAWST-WRF Configuration
(USeast coast - Gulf of Mexico - Caribbean)
 Model grid
• 392x459 grid points, 9-km grid spacing
• 31 Vertical Levels
 NCEP GFS used for Initial/Lateral Boundary
Conditions
 Vortex-Following Moving Nest (for hurricane)
• 400x400, 31 Vertical Levels, 3-km grid spacing
Validation against Various Ocean Observations
Mean SSH
(Jul-Dec, 2012)
Mean SSH
(Jul-Dec, 2012)
Florida
Transport
Sub-tidal sea level
Florida Current Transport
F48
F36
F24
Hurricane Sandy
Validation
against NHC data
F12
NHC Best Track
COAWST Simulation
F00
Intensity (hPa)
NHC Data
COWAST Simulation
Strength (ms-1)
• Hurricane track (upper)
• Hurricane Intensity (upper right)
• Hurricane strength (lower right)
F00 through F48
U (m/s)
44695
•
•
NDBC buoy observation
COAWST simulation
V (m/s)
SLP (hpa)
U (m/s)
44009
U (m/s)
V (m/s)
V (m/s)
SLP (hpa)
SLP (hpa)
44025
COAWST simulation of Winter Extratropical Cyclone
(ETC)
There are on average,12 east coast
ETCs per winter. They arguably
cause more damage to the U.S. east
coast than tropical storms and
hurricanes due to the frequency of
their occurrence, long duration, and
widespread societal, economic, and
environmental impacts.
Neslon, J (2011)
Nelson and He (2012)
 Widespread rain, snow, and ice
 Strong winds and extreme cold
 Affects densely populated areas
 Coastal storm surge and flooding
 Severe beach erosion
 Commercial fishing industry affected
11
January 22- 24, 2005 “Bomb” cyclones deepen at least 1 mb/hr for 24 hrs
Model/Data Comparisons
Surface Air Temperature
Shelf water Temperature
14 January 2005
Model T
Glider T
NCSU COAWST Nowcast/Forecast Web portal
COAWST related publications
•
Warner, J.C., Armstrong, B., He, R., and Zambon, J.B. (2010), Development of a Coupled OceanAtmosphere-Wave-Sediment Transport (COAWST) modeling system: Ocean Modeling, v. 35, no.
3, p. 230-244.
•
Kumar, N., Voulgaris, G., and Warner, J.C. (2011). Implementation and modification of a threedimensional radiation stress formulation for surf zone and rip-current applications, Coastal
Engineering, 58, 1097-1117, doi:10.1016/ j.coastaleng.2011.06.009.
•
Olabarrieta, M., J. C. Warner, and N. Kumar (2011), Wave-current interaction in Willapa Bay, J.
Geophys. Res., 116, C12014, doi:10.1029/2011JC007387.
•
Kumar, N., Voulgaris, G., Warner, J.C., and M., Olabarrieta (2012). Implementation of a vortex
force formalism in a coupled modeling system for inner-shelf and surf-zone applications. Ocean
Modeling.
•
Olabarieta, M., Warner, J., Armstrong, B., Zambon, J., and He, R. (2012), Ocean-Atmosphere
Dynamics During Hurricane Ida and Nor’Ida: An Application of the Coupled Ocean-AtmosphereWave-Sediment Transport (COAWST) Modeling System, Ocean Modelling, 43-44, 112-137.
•
Xue, Z., He, R., Liu, J. P, J. C. Warner (2012), Modeling Transport and Deposition of the Mekong
River Sediment, Continental Shelf Research, doi:10.1016/ j.csr.2012.02.010.
•
Nelson, J. and He. R. (2012), Effect of the Gulf Stream on Winter Extratropical Cyclone Outbreaks,
Atmospheric Research Letter, doi: 10.1002/asl.400.
•
Zambon, J.B., He, R., Warner J.C (2013). Prediction of Hurricane Ivan using a Coupled OceanAtmosphere-Wave-Sediment Transport (COAWST) Modeling System, Weather and Forecasting,
in review

similar documents