Tips och tricks!

Report
Source separation –
the future is now?
On urine and blackwater separation
Håkan Jönsson
Professor
Department of Energy and Technology
Institutionen för energi och teknik
Contributions to household wastewater,
g/p,yr (kg/p,yr for mass and mg/p,yr for Cd)
100%
90%
431
68
548
80%
4
9490
183
70%
60%
73
36500
50%
40%
4015
30%
12410
370
5
20%
14
10%
0%
Nitrogen
60
543
Phosphorus Wet Weight
Refs: Jönsson et al., 2005. Composition of urine ,
faeces, greywater and biowaste ;
For P in greywater: Ek et al., 2011. Teknikenkät
1825
4
BOD
Pb
Urine
Faeces
0
Cd
Greywater
Urine & blackwater as fertilizer
N effect

Approx similar to NH4+-N fertilzer.
In Sweden: 90% of NH4NO3 fertilizer after reduction for NH3-loss. (Johansson et al. 2000)
P effect

Similar to mineral P fertilizer (Kirchman & Pettersson, 1995)

Blackwater ought to be simila)
Certified fertilizer according system SPCR178
Composition compared with removed nutrients
Jönsson & Vinnerås, 2013. Closing the loop: Recycling nutrients to agriculture. In: Wastewater Treatment: Source
Separation and Decentralisation, Larsen,m.fl. (eds.), IWA Publishing-
Urine separation system
Foto: www.saniphos.nl
Foto: Gustavsberg
Spreading of urine at Bornsjön.
SaNiPhos struvite plant,
Zutphen, NL.
Capacity 5000 m3/yr. Start
2010.
Foto: Yara.se
Foto: Wostman Ecology
Urine storage at Bornsjön. Capacity:
450 m3
WME DS Ecoflush
Gustavsberg
Productive use
Foto: H. Jönsson
Treatment/sanitization
Foto: H. Jönsson
Collection
Spreading of mineral fertilizer
Black water system
Low water collection
Treatment/Sanitization
Productive use
Foto: H. Jönsson
Storage & treatment facility for
blackwater in Uddevalla.
Photo: Brenda Vidal Estévez
Foto: H. Jönsson
Urea
UASB-Septic reactor,
Sneek , NL
Foto: Yara.se
Foto: E. .von Muench
Spreading of liquid fertilizer at
Bornsjön.
Spreading of mineral fertilizer
BOD:N:P for fractions
 N and P needed for activated sludge
 BOD7:N:P 100:3.5:0.8 (Rennerfelt, 1991)
 BOD5:N:P 100:5:1 (Eckenfelder & Musterman. 1998)





Urine: 100:220:20
Blackwater: 100:32:4
Mixed household wastewater: 100:21:3
Greywater: 100:5:1
Greywater  25% household wastewater + 75% carbon
source
Source separation effects on wastewater
treatment plant (WWTP)
 Increases BOD:N  simplifies N reduction
 Lower sludge age & more sludge  increased biogas yield
Urine separation
 85% US & struvite (Wilsenach & van Loosdrecht, 2003):
Energy: 299 MJ/p,yr - 38 MJ/p,yr,
Effuent Ntot 7 mg/l  1 mg/l.
 40% US (Wilsenach, 2006, p98)
Increased WWTP capacity 20%, 60% if combined with
preprecipitation
Blackwater
 Operational Cost Index in BSM2
Environemental systems analysis results
Urine separation systems
US & U to field
US & U to field
US & konc U to field
US & U to field
US U to field
US, struvite &anammox
Blackwater systems with
vacuum systems and no
heat treatment
BS - B stored & to field
BS- B&KW
dig+anamm+struv.
BS-F&KW-dig.+anamm+
struv.+ U to field
Energy
*Primary
MJ/p,yr
-63
-95
*-284
*-86
*-69%
-235
N effluent
change
-45%
-0.1 kg
+/-0
-1.2 kg/p,y
+/-0
-85%
Ref
Jönsson, 2002
Balmer et al., 2002
Maruer et al., 2003. Infrastruc incl.
Tidåker et al., 2007. Infrastruc incl.
Spångberg et al., 2014. Infrastruc incl.
Wilsenach & van Loosedrecht, 2003
*-73%
+/-0
Spångberg et al., 2014. Infrastruc incl.
*-370
41%
Tervahauta et al., 2013.
*-677
-86%
Tervahauta et al., 2013.
Hygiene
Urine
 Sterile in the bladder & very few pathogens can spread
via urine - Risk due to possible faecal contamination
 NV (2013): 1 month storage.
Blackwater
 Faeces - high pathogen risk
 NV (2013) – like sludge e.g.
8 h at 55°C or …
75mM NH3, 3,7 g/l TAN @ pH9 T4°C
 Few pathogens to environment, also at overflows
– Pathogens in greywater 10-4 as many as in mixed WW
 Decreased spreading of antibiotic resistance
Organic pollutants in the fractions
 Urine and faeces: Hormones and pharmaceutical residues
(1400 active substances, many identical to natural
substances)
 Problems in aquatic environment
 Greywater: Most of the 30.000+ substances in society can
occur.
Pharmaceuticals, hormones and Cd
Hormones –
– 17 estradiol and 17 etinylstradiol degraded in day to days Colucci
& Topp (2001); Colucci et al. (2001)
– More hormones in manure than in urine & faeces
Pharmaceuticals
– Max dose Oxytetracycline 0,1 g/ha (Winker et al., 2009)
– Potatoes in Skåne 2009/10 sprayed with on average 1340 g/ha
herbicides och 2530 g/ha fungicides
– Pharmaceuticals meant for humans, tested on humans
– Can be removed at high energy cost
Cd health risk to Swedes – no safety margin
– Urine has only 0.6 mg Cd/kg P, blackwater 11 mg/kg, mineral fertilizers
3-6-100 mg/kg P.
Lessons from old US systems
Some still running but many closed or urine not used.
 Fertilizer product should be used!
 Professional installation standard!
 Equal or lower running cost and effort
 (Appreciation)
New installations – challenges
 Organisation and division of responsibilities
– Total running costs and efforts
 Tradition and acceptance of WW organisation
 Increased house investment
– Decreased/delayed central investment
 Toilets and system know-how
– Catch 22
Installations – present and new
Europe
 Sneek, NL – 30 built, 220 decided
 Hamburg, G – Planning for several 1000 installations
Sweden – prime actor
 Urine diversion 22 000 with collection tank + 120 000
simple inserts with dry faecal handling (Jönsson et al.
2013)
 Blackwater 122 000 installations with collection tanks
(sluten tank) (Jönsson et al. 2013)
 Blackwater recycling: SLU/LRF project: (Västervik,
Uddevalla, Strängnäs, Västerås, Örebro, Töreboda).
Others: Södertälje, Norrtälje, Eskilstuna, Kungsbacka …
 Planning: Stockholm (Norra Djurgårdsstaden),
Helsingborg (H+), Östhammar,
Conclusions –
The future starts now!





Source Separation systems save energy
SS systems decrease nutrients to water
SS systems increase nutrient recycling
SS systems increase WWTP capacity
SS systems decrease pharmaceuticals and hormones
to water
 Blackwater systems decrease pathogens to
environment, surface & ground water
 Blackwater systems decrease antibiotic resistant
organisms to environment
 Blackwater & kitchen waste combined systems can
give great synergies (collection, treatment, etc.)
References
Colucci & Topp. 2001. Persistence of estrogenic hormones in agricultural soils: II. 17 ‐etonylestradiol. Journal of Environmental Quality
30: 2077‐2080.
Colucci et al. 2001. Persistence of estrogenic hormones in agricultural soils: I. 17‐estradiol and estrone. Journal of Environmental
Quality 30: 2070‐2076.
Eckenfelder & Musterman. 1998. Activated Sludge: Treatment of Industrial Wastewater.
Ek et al. 2011. Teknikenkät enskilda avlopp 2009. SMED Rapport 44
Johansson et al. 2000. Urinsortering – en del av kretsloppet. Rapport T17:2000, Byggforskningsrådet.
Jönsson. 2002. Urine separating sewage systems – environmental effects and resource usage. Water Science and Technology 46(67):333-340.
Jönsson et al. 2005. Composition of urine , faeces, greywater and biowaste. Urban Water report.
Jönsson et al. 2013. System för återföring av fosfor i källsorterade fraktion av urin, fekalier, matavfall och i liknande rötat samhälls- och
lantbruksavfall. Rapport 061, Institutionen för energi och teknik, SLU.
Kirchman & Pettersson, 1995. Human urine – chemical composition and fertilizer efficiency. Fertilizer Research 40:149‐154.
NV. 2013. Hållbar återföring av fosfor. Rapport 6580. Naturvårdsverket
Rennerfelt, 1991. Kommunal och industriell avloppsteknik. KTH.
Spångberg et al. 2014. Environmental impact of recycling nutrients in human excreta to agriculture compared with enhanced wastewater
treatment. Science of the Total Environment 493:209-219.
Tervahauta et al.. 2013. Prospects of Source-Separation-Based Sanitation Concepts: A Model-Based Study. Water 5:1006-1035.
Tidåker et al. 2007. Environmental impact of wheat production using human urine and mineral fertilisers - a scenario study. Journal of
Cleaner Production 15:52-62.
Wilsenach. 2006. Treatment of source separated urine and its effects on wastewater systems. Diss. Delft University.
Wilsenach & van Loosdrecht. 2003. Impact of separate urine collection on wastewater treatment systems. Water Science and
Technology 48(1):103‐10.
Winker et al. 2009. Fertiliser products from new sanitation systems: Their potential values and risks. Bioresource Technology 100: 4090–
4096.
Volymreduktion – alkalisk torkning
och produktion av ammoniumtritrat
Foto: SuSanA
Foto: S. Dutta
 Ohydrolyserad urin
 Urea ammonium
blandas med 5-15% aska  Nitrifiera 50%
 Lufttorkning  Ammoniumnitratlösning
rumsventilation
koncentreras – lufttorkning,
 Högt pH gör att urean inte
destillation eller RO
hydrolyserar
 Kvar: N 70-90%;
PKS etc. 100%
 Konc. upp till 20% N
Behövs volym- och läkemedelsreduktion?
Volym
 1250 kor + 1250 kvigor producerar ca 35 000 m3/år
– KL-system hemma  25 000 personer (1,3 m3/p,år)
– Urinsortering hemma  65 000 personer (0,55 m3/p,år)
Läkemedel
 Gödsling med urin till höstvete enligt N-behov
– Maxdos läkemedel Oxytetracycline 0,1 g/ha (Winker m.fl., 2009)
– Potatis i Skåne fick 2009/10 1340 g/ha ogräsmedel och 2530 g/ha
svampmedel, tillsammans 3870 g bioaktiva ämnen.
– Tungmetaller Urin 0,6 mg Cd/kg P och KL-vatten ca 11-13 mg Cd/ha
– Läkemedlen kan tas bort, om vi vill.

similar documents