Technische Universität Berlin Microwave Engineering

Report
0.1
0
0.
Technische
Universität Berlin
°
0°
0°
0.
19
14
0°
15
°
160
20°
Design of Microwave Power
Amplifier with ADS
°
0.0
1
30
0.2
4
20
0.
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
Technische Universität Berlin
Fachgebiet Mikrowellentechnik
0
0°
21
°
0°
0
22
9
0.3
0.
31
31
32
0.
0°
23
45
0.
0.2
0.
44
0°
30
0
0°
0.4
3
0.4
°
200
°
340
0°
32
Gruner, ADS User Meeting 09
33
Daniel Gruner, Ahmed Sayed, Ahmed Al Tanany, Khaled Bathich,
Henrique Portela, Amin Hamidian, Georg Boeck
1
Technische
Universität Berlin
°
0.
06
0°
14
5
0.0
Outline
• Introduction
0.2
1
0°
0.
19
30
°
15
0°
20
0.
4
0
°
°
160
20°
• PA Overview
• ADS Design Flow
• Power Amplifier Design
 Transistor Characterization
 Hybrid Broadband Power Amplifier
 Hybrid Doherty Power Amplifier
°
0°
21
0°
0
22
0.
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0
0°
• Summary and Conclusion
0.3
°
9
 Monolithic 24 / 60 GHz Power Amplifier
0.2
33
 Monolithic 6 GHz Power Amplifier
32
45
0.
°
200
340
 Hybrid Switch Mode Power Amplifier
31
30
0
0°
0.4
0.0
13
8
Microwave Engineering
5
40
3
0.4
0.1
0
0.
2
Technische
Universität Berlin
°
0°
14
0.0
Introduction
Microwave Engineering Laboratory, Berlin Institute of Technology
0.2
1
0°
0.
19
30
160
20°
°
°
15
0°
°
4
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
Research Focus
0°
21
45
0.
0
22
°
9
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0
0°
- Local positioning system
0.3
- RF front end design (6 GHz, 24 GHz, 60 GHz)
32
- Distance measurement system
0.2
- 10/40 GHz Synthesizer
- Characterization of integrated devices
0°
30
0
0°
0.4
3
200
0.4
- Modeling of passive mm wave structures
33
- Characterization of passive and active devices
- Power Amplifier (6 GHz, 24 GHz, 60 GHz…)
°
- Power Amplifier (Broadband,
Doherty, Switch Mode…)
MMIC Design
340
°
Hybrid Design
3
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
0.0
15
20°
°
°
Antenna
Information
signal
Modulator
Preamplifier
PA
Carrier
340
0°
21
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
0°
0.2
33
• PA is the last active part in a transmit system, followed by
the transmitting antenna
°
200
°
160
1
30
• Power amplifiers (PAs) belong to the most challenging
function blocks in every communication system
0.2
4
20
0.
PA Overview (1)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
4
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
Multimedia
Wireless
System
Radio
Automotive
DVBT / DVBH
Radar
1900
Doppler LANGSMWB
HDTV
Radar900
GSM
802.11 b/g/n
Satellite
Satellite
TETRA
FM
Broadcasting
802.11a/n
GSM 450
23
°
0
22
21
45
0.
9
0
0.
44
0°
Gruner, ADS User Meeting 09
0.3
40,500
1710- -46,900
2690
f [MHz]
0.
31
1 - 960
60,000 - 77,000
3000
0°
100
32
1
DVBT/
10,700 - 13,250
DVBH
0.2
5150 - 5875
0°
3500
33
0°
6000
UMTS
GSM 1800 WiMAX 3G-LTE
UMTS-Extension
f [MHz]
°
200
WiMAX
Analog
TV
340
°
WiMAX
32
0.
AM
Broadcasting
0°
30
0
0°
0.0
15
• Communication Applications Spectrum
31
°
20°
160
°
0.4
3
0.4
1
30
• PA design for a huge variety of different standards,
frequency bands, power levels, device technologies…
0.2
4
20
0.
PA Overview (2)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
5
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
160
20°
°
°
15
1
30
0.0
• Performance Metrics
0.2
4
20
0.
PA Overview (3)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
 Output power: strongly depend. on the load impedance
 Efficiency: measure for transformation of DC to RF energy
(PAE, Drain-/Collector-, overall efficiency)
 Linearity: IP3, ACPR, AM-AM/PM-Conversion
0°
21
0°
0.2
33
9
°
0
22
0
0.
31
32
0.
0°
23
45
0.
0.3
0°
0.
44
0°
Gruner, ADS User Meeting 09
32
 Less important: Small signal behavior, matching etc.
31
30
0
0°
0.4
3
0.4
°
200
°
340
 Maximum ratings: guarantee max. temp., voltage, current…
6
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
15
°
160
20°
°
0.0
• Fundamental PA categories
1
30
0.2
4
20
0.
PA Overview (4)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
 Linear PA
- Classes A, B, AB, C
 Switch Mode PA
- Classes D, D-1, E, F, F-1, S, etc.
0°
21
°
9
0
0°
0
22
0.3
0.
31
31
32
0.
0°
23
45
0.
0°
32
0.
44
0°
Gruner, ADS User Meeting 09
0.2
33
30
0
0°
0.4
3
0.4
°
200
°
340
 Combinations, extensions, smart transmitters
- Power Combining, Doherty, Chireix, LINC, etc.
7
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
°
160
 Linear operation
 Low efficiency: PAEMAX = 50% (GP  ∞)
I
2VDD-Vknee DS
IDS
Load lineImax
°
°
3T/4
T/2
VDD
0
VDS
0.
31
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
T
0
VGST/4 0
0°
0
22
9
0
0.3
Vp
Vknee
0.2
RL
0°
21
q
Voltage
32
45
0.
ImaxCurrent
/2
32
0.
0°
200
BiasI point
°
Drive
and
Bias
VDD
340
Voltage [V]
Imax
Current [A]
VDD
33
30
0
0°
0.4
3
0.4
20°
 Conduction angle of 360o
31
0.0
15
°
Class A:
1
30
0.2
4
20
0.
PA Overview (5)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
8
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
15
0°
14
0°
IDS
Imax
Current
Bias point
0°
Voltage
21
0
VGS
0
0.
31
23
0.
44
0°
Gruner, ADS User Meeting 09
VDS
0
VP
0.3
°
T
0°
0
22
3T/4
32
45
0.
T/2
32
0.
T/4
9
0
0.2
0°
Vknee
°
VDD
IDS
Imax
Current [A]
2VDD-Vknee
Voltage [V]
PAEMAX = 78.5 %
0°
30
0
0°
0.4
3
0.0
°
160
 Increased efficiency:
31
°
 Less linear than class A
340
200
20°
 Conduction angle of 180o
33
0.4
°
Class B:
1
30
0.2
4
20
0.
PA Overview (6)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
9
Technische
Universität Berlin
°
0°
14
0.0
°
20°
 Conduction angle: 180° < Θ < 360°
160
1
Class AB:
0.2
0°
PA Overview (7)
°
15
0.
19
30
 Compromise between class A and class B
 Trade off between linearity and efficiency
I DS
°
200
Voltage
0°
VDD
0.2
0°
21
°
Class AB
Current
340
Voltage [V]
Imax
Imax
Current [A]
2VDD-Vknee
33
°
0
22
T/2
3T/4
0.
31
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
T
32
0.
T/4
31
0
0
VGS
0°
Vp
0
0.3
Vknee
32
45
0.
9
30
0
0°
0.4
3
0.4
0°
°
4
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
10
Technische
Universität Berlin
°
1
0.0
0°
14
Class C:
0.2
0°
PA Overview (8)
°
15
0.
19
30
160
20°
°
 Conduction angle: Θ < 180°
 Increased efficiency compared to class B
 but: decreased POUT
2VDD-Vknee
I DS
Imax
Current
°
Class C
21
0°
0.2
33
0°
°
200
Voltage
VDD
340
Voltage [V]
I max
Current [A]
3T/4
23
0.
44
0°
Gruner, ADS User Meeting 09
T
0
0.
31
0°
°
T/2
32
0.
T/4
31
0
0°
0
22
Vknee
0
VGS
0.3
Vp
32
45
0.
9
30
0
0°
0.4
3
0.4
0°
°
4
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
11
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
• Classical classes
- Simultaneous voltage and current
- Dissipation across the device
IDS
IMAX
- Limits practical efficiency
A
IQ
9
VDD
0
0°
0
22
0.3
°
2VDD- VKnee
0.
31
32
0.
0°
23
0°
21
0.
44
0°
Gruner, ADS User Meeting 09
0.2
VDS
0°
0 V
Knee
32
45
0.
AB
33
- Non-overlapping waveforms
- Dissipated power is low
- High efficiency is enabled
- Linearity is critical
SM
°
• Switch mode classes
31
30
0
0.0
15
 Reduced volume, weight and cost
340
0°
0.4
3
°
160
°
 Lower cooling effort & extended active device lifetime
20°
200
°
0.4
30
1
• Increased efficiency  Reduced battery / power consumption
0.2
4
20
0.
PA Overview (9)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
12
0.
06
0°
0.
19
0°
PA Overview (13)
14
5
0.0
0
0°
15
°
160
20°
• Efficiency of classical PAs
decreases in back-off region
• Critical for modern wireless
standards with high PAR
• Solution
°
°
200
340
 Main PA (AB) and Peaking PA (C)
DPA
Efficiency
 Two PAs connected in parallel
0°
 Load modulation
21
0°
°
0
22
Psat
Pout
0.
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
31
Psat -6 dB
0
0°
in back-off region
0.3
32
45
0.
9
 High efficiency is maintained
0.2
33
30
0
0°
0.4
3
0.4
1
30
0.2
Doherty Power Amplifier
20
0.
4
13
8
Microwave Engineering
5
°
0.0
Technische
Universität Berlin
°
40
°
0.1
0
0.
13
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
°
160
Start
ADS
Schematic
Design
20°
ADS
EM/Co
Simulation
Redesign
21
0°
0.2
33
0°
°
200
ADS
Schematic
Simulation
340
°
EM
Simulation of
Passive
Structures
0.
31
32
0.
°
0
22
0°
23
45
0.
9
0
0°
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
Layout and
DRC
31
30
0
0.0
15
°
0°
0.4
3
0.4
1
30
0.2
4
20
0.
ADS Design Flow
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
14
0.1
0
0.
Technische
Universität Berlin
°
0°
0°
14
0°
15
0.0
°
 Maximization of Pout , efficiency, linearity @ targeted input power / bias
20°
 Tuning (pulling) of the source and/or load impedance until optimum PA
 Can be performed on simulation
and measurement level
340
21
0°
0.2
33
0°
°
200
°
160
°
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
1
30
Optimized amplifier performance
0.2
4
20
0.
PA Design  Transistor Characterization (1)
0.
19
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
15
Technische
Universität Berlin
°
°
0°
14
0.0
160
20°
°
Z
2-4 GHz
LOAD,OPT @
Load-Pull,
2 GHz
Device Ref. Plane
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
1
• Eudyna GaN-HEMT, 10 Watt, VDD = 48 V, ID= 120 mA
0.2
0°
PA Design  Transistor Characterization (3)
0.
19
30
15
0°
°
4
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
16
Technische
Universität Berlin
°
0°
14
0.0
PA Design  Transistor Characterization (4)
0.
19
15
°
20°
ZOPT
160
1
°
ADS-Simulation
ΓLOAD
ΓSOURCE
Measurement
ADS-Simulation
Measurement
°
0
22
0
0.
31
31
32
0.
0°
23
45
0.
9
0.3
0°
0.
44
0°
Gruner, ADS User Meeting 09
32
 Good agreement between measurement and simulation
0.2
21
0°
°
200
°
340
f = (2, 2.5, 3, 3.5, 4) GHz
0°
f = (2, 2.5, 3, 3.5, 4) GHz
33
30
0
0°
0.4
3
0.4
0.2
• Measurement vs. ADS-Simulation, 10 W GaN-HEMT Eudyna
30
0°
0°
°
4
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
17
0.
06
0.
19
0°
PA Design  Hybrid Broadband PA (1)
14
5
0.0
0°
0°
15
°
Step 2: Transistor selection
20°
Step 3: Load/Source Pulling

Step 4: Networks verification
Step 5: Assembly
PoutPout
Opt
 Meas. vs. ADS-Simulation
contours

C305
TL3
C306
C308 C307
TL22
L1
P1
SNP7
°
200
°
340
DAC

TL4
0°
DAC1
21
0°
0.2
33
9
C271
TL94
TL95
0
22
TL134
Tee38
Term2
0
C270
0°
PORT1
Tee39
0.3
TL97
°
Tee45
32
45
0.
TL115
TL96
C269
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.
31
C298
32
0.
TL98
31
30
0
0°
0.4
3
0.4
1
30
IMDOpt
Step 1: PA requirements
0.2
4
0
20
0.
0.0
13
8
Microwave Engineering
5
°
°
Technische
Universität Berlin
°
40
160
0.1
0
0.
18
0°
0.
19
0°
PA Design  Hybrid Broadband PA (2)
14
0.0
0
0°
15
160
20°
°
°
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
1
30
0.2
Network verification
20
0.
5
0.
06
13
8
Microwave Engineering
5
°
4
Technische
Universität Berlin
°
40
0.0
0.1
0
0.
19
Technische
Universität Berlin
°
0°
14
0°
PA Design  Hybrid Broadband PA (3)
Pout [dBm], GP [dB]
25
Pout
30
20
25
15
PAE
20
10
PAE [%]
15
0°
4
°
f = 3 GHz
20°
160
30
10
GP
15
Transistor: GaN-HEMT, Cree (packaged)
1
°
40
35
0.2
 Example I: 5 W, 0.001 – 3 GHz PA
30
5
0
5
10
15
20
0
30
25
Pin [dBm]
80
22
1.5
2.0
f [GHz]
30
0
1.0
2.5
3.0
32
0.
0.5
0°
0°
200
°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.0
0.
31
30
0
48
0°
0
22
40
31
21
50
0.3
45
0.
60
32
OIP3 [dBm]
PA Performance [dBm]
PAE [%]
°
37
70
9
OP1dB [dBm]
Pout
0.2
12
OIP3
°
Gain [dB]
OIP2
340
0.001 – 3
0°
BW [GHz]
33
0°
0.4
3
0.4
0.
19
°
0.0
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
20
Technische
Universität Berlin
°
0°
0.
19
14
0°
PA Design  Hybrid Broadband PA (4)
°
0°
15
°
40
20°
160
1
°
40
Transistor: GaN-HEMT, Cree (die)
30
30
Pout
PAE
20
20
PAE [%]
Pout [dBm], Gain [dB]
f = 5 GHz
GP
10
10
0
15
20
25
Input Power [dBm]
0
35
30
50
0°
19
20
OIP3 [dBm]
51
10
9
23
0.
44
0°
Gruner, ADS User Meeting 09
6
7
8
32
0.
4
5
f [GHz]
0°
3
31
2
9
0
1
0.
31
0
0.3
°
PAE [%]
0.2
37
0°
0
22
30
OP1dB [dBm]
0°
21
Sim PAEmax
40
PA Performance
°
200
Sim Poutmax
Meas PAEmax
32
45
0.
8 ± 1.5
Meas Poutmax
°
Gain [dB]
0.35 – 8
340
BW [GHz]
33
30
0
0°
0.4
3
0.4
0.2
30
 Example II: 5 W, 0.35 – 8 GHz PA
4
0.0
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
21
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
15
0.0
°
Main PA  Class AB
Peaking PA  Class C
 Eff. Enhancement
20°
Design phases
•
•
•
ADS Schematic
ADS Momentum
Realization and measurement
340
Specifications
°
9
0
22
0
0°
0.
31
31
32
0.
0°
23
0°
21
0.
44
0°
Gruner, ADS User Meeting 09
0.3
45
0.
0°
0.2
UMTS downlink (2.1 GHz )
Pout > 50 W
PAE > 35% over 6-dB backoff
32
•
•
•
33
30
0
0°
0.4
3
0.4
°
200
°
160
°
•
•
1
30
DPA
0.2
4
20
0.
PA Design  Hybrid Doherty PA (1)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
22
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
15
0.0
160
20°
°
°
°
-8.5
S21 [dB]
9.6
S22 [dB]
-9.9
0.
31
31
32
0.
0°
23
°
0
22
9
0
0°
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
0°
0.2
S11 [dB]
21
0°
°
200
340
Small signal measurements
 ƒ=2.1 GHz
33
30
0
0°
0.4
3
0.4
1
30
0.2
4
20
0.
PA Design  Hybrid Doherty PA (2)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
23
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
20
0.
15
0°
70
70
OP1dB [dBm]
47.2 (52 W)
OPSAT [dBm]
49.4 (87 W)
ηmax [%]
40
50
40
Pout
30
30
Eta, PAE
20
20
Gain
10
10
°
200
50
60
340
°
55.0
60
Eta (%), PAE (%)
9.6
Pout (dBm), Power Gain (dB)
Gss [dB]
Pout
Eta
PAE
Gain
20
25
30
Pin (dBm)
35
40
45
9
°
0.
31
0.
44
0°
Gruner, ADS User Meeting 09
32
0.
0
22
Measurement - Symbols
0
34.0
0°
PAE6-dB [%]
0
0.3
Simulation - Solid lines
23
21
15
0.2
40.0
10
0°
η6-dB [%]
0
32
45
0.
45.0
0°
0°
PAEmax [%]
31
30
0
0.0
°
160
20°
 ƒ=2.1 GHz
33
0°
0.4
3
0.4
°
Large signal measurements
1
30
0.2
4
14
0°
PA Design  Hybrid Doherty PA (3)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
24
AB
0 V
Knee
VDS
VDD
2VDD- VKnee
340
0.
06
0°
5
14
UMTS application
High efficiency is required
Supply voltage 50 V
Pout = 50 W
°
0.2
°
9
0
22
0
0.
31
32
0.
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
0°
0°
0°
SM
0°
21
IQ
33
45
0.
A
32
•
•
•
•
IMAX
31
30
0
0°
0.4
3
4
0.0
0°
15
Specifications
IDS
20°
• The output network creates nonoverlapping waveforms
• Dissipated power is low
 High efficiency is enabled
 Design of the device load network
is decisive
1
Switch mode classes
0.2
0.0
PA Design  Hybrid Switch Mode PA (1)
0.
19
°
°
0°
30
160
0
20
0.
°
13
8
Microwave Engineering
5
°
200
Technische
Universität Berlin
°
40
0.4
0.1
0
0.
25
0.
06
0°
PA Design  Hybrid Switch Mode PA (2)
14
5
0.0
0°
0.
19
0°
Load-/Source-Pulling
Source
 Targeted input power
 Bias point (Vg  class B/AB)
 Optimum impedances
Load
 Harmonic load impedances as equation
20°
•
°
15
30
•
•
Load Impedance for a class D-1 switch mode PA
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
1
ADS Schematic design flow
0.2
4
0
20
0.
0.0
13
8
Microwave Engineering
5
°
°
Technische
Universität Berlin
°
40
160
0.1
0
0.
26
0.1
0
0.
Technische
Universität Berlin
°
0°
0°
0°
15
0.0
°
Realization of class D-1 switch mode PA
 Eudyna GaN-HEMT
20°
 3 dB hybrid coupler 90o
 Single stub OMN
340
0°
0.
31
°
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0
0°
λ/4
λ/4
0.3
Q2
9
S
0
22
50 Ω
90o
0.2
21
OMN
32
45
0.
Res.
0°
S
S
33
IMN
90o
R
Hybrid
32
0.
Hybrid
°
Q1
31
200
°
160
°
30
0
0°
0.4
3
0.4
1
30
0.2
4
14
20
0.
PA Design  Hybrid Switch Mode PA (3)
0.
19
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
27
0°
0.
19
0°
15
Pout [dBm], Gain [dB]
60
Gain
Efficiency
20
40
meas
0°
21
0
°
0
22
40
Pin [dBm]
0.
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0
30
0.3
20
0°
10
32
45
0.
9
-20
0.2
meas
Gainmeas
meas
20
0°
Poutsim
sim
PAEsim
sim
sim
sim
Gainsim
sim
°
Poutmeas
meas
PAEmeas
meas
0
31
30
0
160
°
40
340
200
Pout
33
0°
0.4
3
0.4
80
20°
°
°
 PAE = 60.3 %
1
30
60
 Pout = 47 dBm (50 W)
@ Pin = 33 dBm
 η = 62.7 %
0.2
Large signal results
Efficiency [%]
0°
PA Design  Hybrid Switch Mode PA (4)
14
0.0
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
°
4
Technische
Universität Berlin
°
40
0.0
0.1
0
0.
28
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
°
Development of a fully integrated 6 GHz PA
160
20°
• Applications
 6 GHz Wireless LAN
 Vehicular environments (IEEE P802.11p)
• Linear power amplifier
°
0°
9
0
22
0
0°
0.
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
°
21
0°
0.2
33
32
45
0.
°
200
340
 Class AB operation
 Push-Pull topology
 Low supply voltage
 SiGe HBT technology
31
30
0
0°
0.4
0.0
15
°
3
0.4
1
30
0.2
4
20
0.
PA Design  Monolithic 6 GHz PA (1)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
29
0.1
0
0.
Technische
Universität Berlin
°
0.
06
13
0
0.
19
0°
PA Design  Monolithic 6 GHz PA (2)
14
0°
160
RFout
20°
• PA performance degrades with larger
transistor arrays
RFin
°
0.0
15
°
 Power combining of several efficient PA
stages with decreased transistor size
• Integrated transformer is used as power
combiner
• Transformer design using ADS-Momentum
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
 PA design using EM/Co simulation in ADS
32
45
0.
9
30
0
0°
0.4
3
0.4
1
30
0.2
4
°
20
0.
5
0°
40
0.0
8
Microwave Engineering
5
30
Technische
Universität Berlin
°
0.
19
14
0°
PA Design  Monolithic 6 GHz PA (3)
0°
15
160
20°
°
50
20
40
15
30
10
20
5
10
VDD = 1.8 V
VDD = 1.2 V
0
PAE [%]
POUT [dBm]
f = 6 GHz
1.3 mm
1.6 mm
0
-5
0
5
10
15
20
°
°
200
340
PIN [dBm]
0°
1.8
21
24
28.5
25
12
°
21
SS Gain
[dB]
0.
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
31
6
0°
0
22
32
45
0.
PAEmax
[%]
9
EtaMAX
[%]
0.2
OPsat
[dBm]
0
OP1dB
[dBm]
0.3
VDD
[V]
0°
Freq.
[GHz]
33
30
0
0°
0.4
3
0.4
1
°
25
30
• Realized 5.6 - 6.4 GHz power amplifier
0.2
4
0°
°
0.0
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
31
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
160
20°
 Industrial, scientific and medical applications
°
0.0
15
°
• Targets
 Gain > 13.5 dB
 OP1dB > 11 dBm
 PAE > 15 %
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
1
30
• 24 GHz ISM band
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (1)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
32
0.1
0
0.
Technische
Universität Berlin
°
0°
14
0.0
4
72 pH
0°
730 fF
960 fF
 0.18 μm CMOS
20°
217 pH
207 pH
1
• Technology
VG
°
VG
30
15
VDD
0.2
VDD
20
0.
°
0.
19
PA Design  Monolithic 24 / 60 GHz PA (2)
207 pH
160
0°
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
RF OUT
Vbias
0.18 µm x
3 µm x 20
2.8 pF
RFin
RF IN
0.18 µm x
3 µm x 20
81 fF
2.8 pF
0.18 µm x
9 µm x 20
• Amplifier topology
 2 Stage cascode amplifier
 Simplified on-chip impedance
matching using bias network to match
the impedance.
0
32
0.
°
0°
°
0
22
9
0.3
0.
31
31
21
0°
0°
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.2
 Circuit simulation on ADS
 Layout in cadence
 EM/Co simulation on ADS
32
45
0.
°
200
340
• Design procedure
33
30
0
0°
0.4
3
0.4
0.18 µm x
9 µm x 20
33
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
15
0.0
160
20°
°
°
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0.
31
31
32
0.
0°
30
Cadence Layout
0
0°
0
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
0°
0.4
3
0.4
1
30
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (3)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
34
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
15
0.0
160
20°
°
°
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0.
31
31
32
0.
0°
30
Momentum simulation
0
0°
0
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
0°
0.4
3
0.4
1
30
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (3)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
35
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
15
0.0
160
20°
°
°
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0.
31
31
32
0.
0°
30
Momentum simulation
0
0°
0
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
0°
0.4
3
0.4
1
30
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (3)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
36
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
15
0.0
160
20°
°
°
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0.
31
31
32
0.
0°
30
ADS EM/Co Simulation
0
0°
0
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
0°
0.4
3
0.4
1
30
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (3)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
37
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
15
0.0
160
20°
°
°
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0.
31
31
32
0.
0°
30
ADS EM/Co Simulation
0
0°
0
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
0°
0.4
3
0.4
1
30
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (3)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
38
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
15
0.0
160
20°
°
°
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0.
31
31
32
0.
0°
30
Microphotograph of the PA die
0
0°
0
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
0°
0.4
3
0.4
1
30
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (3)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
39
Technische
Universität Berlin
°
0.
06
13
0
0°
PA Design  Monolithic 24 / 60 GHz PA (4)
14
0.0
0°
15
.
S11 [dB]
°
-15
20°
-20
Meas S11 [dB]
-25
Freq.
[GHz]
26.5
VDD
[V]
3.0
OP1dB
[dBm]
13.5
OPsat
[dBm]
17.5
Sim S11 [dB]
-30
0
5
10
15
20
25
30
35
40
Frequency [GHz]
18
Meas S21 [dB]
Sim S21 [dB]
16
.
6
12.3
Peak PAE
[%]
22.5
Chip size
[mm2]
21
0°
0
22
5
10
15
20
25
30
35
0
40
32
0.
23
0.
44
0°
Gruner, ADS User Meeting 09
0.
31
Frequency [dB]
0°
0
0°
0
0.3
°
0.73 x 1.15
32
45
0.
2
9
4
0.2
33
0°
°
8
PAE @ P1dB [%]
°
10
340
12
S21 [dB]
14
31
30
0
160
°
 Good agreement between simulation
and measurements
-10
1
• Measures
-5
0.2
4
0
30
0°
0.4
3
200
0.
19
20
0.
5
0°
°
0.4
8
Microwave Engineering
5
40
0.0
0.1
0
0.
40
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
• 60 GHz power amplifier
160
20°
°
0.0
15
°
 High oxygen loss at 60 GHz
 Appropriate for indoor or short range wireless communication
• 60 GHz band
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
1
30
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (5)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
41
0°
0°
15
}
°
Parallel stages
High Power Matching
Two Stage
Cascode
20°
}
–
–
–
–
1
High Power
High OP1dB
High PAE
High Gain
°
–
–
–
–
0.2
• Selected Topology
30
VCC
Biasing
Circuit
Biasing
Circuit
°
0°
200
0.2
0°
21
°
IN
340
OMN
33
0.
31
31
32
0.
0°
23
0
22
45
0.
0
0°
0.
44
0°
Gruner, ADS User Meeting 09
0.3
Matching
Circuit
IMN
32
IN
°
9
30
0
0°
0.4
3
0.4
0.
19
PA Design  Monolithic 24 / 60 GHz PA (6)
• Requirements
160
0°
14
0.0
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
°
4
Technische
Universität Berlin
°
40
0.0
0.1
0
0.
42
Technische
Universität Berlin
°
0°
14
0.0
PA Design  Monolithic 24 / 60 GHz PA (7)
°
160
20°
°
Step 1: Load and source pull simulation
• Matching for optimum OP1dB
Step 2: Selection of T.L.s, Inductors and Capacitors
Step 3: EM simulation of matching network
50 Ω
ZOpt
°
200
°
340
0°
21
0°
0.2
ZOpt
33
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
1
• Matching network
0.2
0°
0.
19
30
15
0°
°
4
0
20
0.
5
0.
06
13
8
Microwave Engineering
5
40
0.0
0.1
0
0.
43
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
°
160
20°
• High Power
• High Linearity
• High PAE
• High Gain
18.8
PAE
[%]
0°
21
33
0°
200
61.0
OP1dB OPsat
[dBm] [dBm]
0.2
Gain
[dB]
°
Freq.
[GHz]
340
°
 Measurements
°
0
22
0°
0.
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0
45
0.
9
19.7
0.3
15.5
32
14.5
31
30
0
0°
0.4
0.0
15
°
3
0.4
1
30
 60 GHz PA achievements
0.2
4
20
0.
14
0°
PA Design  Monolithic 24 / 60 GHz PA (8)
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
44
0°
0.
19
0°
Summary and Conclusion
14
0.0
0
0°
15
• Good agreement between EM/Co simulations and
measurements
• Applicable up to mm wave frequencies
• Design procedure has been demonstrated for various PAs
 Hybrid Broadband Power Amplifier
340
200
°
160
20°
°
°
9
 Monolithic 6 GHz Power Amplifier
0.2
0°
°
0
22
0
0°
0.
31
32
0.
0°
23
0°
0.
44
0°
Gruner, ADS User Meeting 09
0.3
 Monolithic 24 / 60 GHz Power Amplifier
31
21
 Hybrid Switch Mode Power Amplifier
32
45
0.
°
 Hybrid Doherty Power Amplifier
33
30
0
0°
0.4
3
0.4
1
30
0.2
• Excellent results using presented ADS PA design flow
20
0.
5
0.
06
13
8
Microwave Engineering
5
°
4
Technische
Universität Berlin
°
40
0.0
0.1
0
0.
45
0.1
0
0.
Technische
Universität Berlin
°
0°
0.
19
0°
14
0°
15
0.0
160
20°
°
°
Thanks
0°
°
200
°
340
21
0°
0.2
33
°
0
22
0
0°
0.
31
31
32
0.
0°
23
0.
44
0°
Gruner, ADS User Meeting 09
0.3
32
45
0.
9
30
0
0°
0.4
3
0.4
1
30
0.2
4
20
0.
Summary and Conclusion
°
0.0
0
40
5
0.
06
13
8
Microwave Engineering
5
46

similar documents