A Panoramic Search for Ly-alpha Blobs at z=3

Report
Ly-alpha
morphology-density
relation @ high-z
Yuichi Matsuda (NAOJ)
松田 有一(国立天文台)
1
Summary
1) Subaru / S-Cam survey shows a hint of Ly-alpha
morphology-density relation at high-z.
2) Current observations are limited to extremely bright Lyalpha blobs.
3) TMT will be able to study the morphology of the circum
galactic medium of more normal galaxies at high-z.
2
Ly-alpha imaging of the CGM
• Lya imaging is a promising way to see the 2D
morphology of the gaseous structure around
high-z galaxies (Chris Martin’s talk).
Dekel et al. (2009), van de Voort et al. (2011)
3
Subaru / S-Cam Lya Survey at z=3
 2.4 sq deg deep Lya imaging survey (Yamada+12)
 12 pointings (SSA22 + 6 surrounding fields, Subaru Deep Field,
GOODS-N, Subaru-XMM Deep Survey Fields)
 1-sigma Lya surface brightness~10-18 erg s-1 cm-2 arcsec-2
 2200 Lya emitters (Yamada+12)
 14 giant (>100kpc) Lya nebulae (Matsuda+11)
Subaru Telescope
8.2 m
+ Suprime-Cam
27’ x 34’
+
Narrow-band filter
21 x 17 cm R ~ 80
4
http://www.naoj.org/
Subaru / S-Cam Lya Survey at z=3
 2.4 sq deg deep Lya imaging survey (Yamada+12)
 12 pointings (SSA22 + 6 surrounding fields, Subaru Deep Field,
GOODS-N, Subaru-XMM Deep Survey Fields)
 1-sigma Lya surface brightness~10-18 erg s-1 cm-2 arcsec-2
 2200 Lya emitters (Yamada+12)
 14 giant (>100kpc) Lya blobs (Matsuda+11)
SSA22-Sb1-LAB1
SSA22-Sb6-LAB1
SSA22-Sb1-LAB2
SSA22-Sb5-LAB1
SSA22-Sb3-LAB1
GOODS-N-LAB1
SSA22-Sb2-LAB1
SSA22-Sb2-LAB2
SSA22-Sb1-LAB5
SSA22-Sb5-LAB2
SSA22-Sb6-LAB4
SSA22-Sb1-LAB3
SXDS-N-LAB1
SSA22-Sb1-LAB16
100 kpc
300
5
kpc
Filamentary & Spherical Lya blobs
SSA22-Sb1-LAB1
SSA22-Sb6-LAB1
S
SSA22-Sb2-LAB2
F
SSA22-Sb1-LAB5
F
5
SSA22-Sb1-LAB2
SSA22-Sb5-LAB1
F
S
SSA22-Sb5-LAB2
F
SSA22-Sb6-LAB4
F
Filamentary
Spherical
SSA22-Sb1-LAB3
S
20-25%
25-30%
3
30-35%
2
35-40%
40-45%
1
0
45-50%
20
25
30
35
40
45
Covering Factor (%
50
55
GOODS-N-LAB1
S
F
4
N
SSA22-Sb3-LAB1
50-55%
SSA22-Sb2-LAB1
F
F
SXDS-N-LAB1
S
SSA22-Sb1-LAB16
100 kpc
300
kpc
The areas of blobs are
measured above a
threshold of 1.4x10-18
erg/s/cm2/arcsec2.
The circles have
diameters of the
major axis of the Lya
6
blobs.
F
Subaru / S-Cam Lya Survey at z=3
-Sb1-LAB3
z=2
Simulation
Covering
Factor
~60%
z=3
SXDS-N-LAB1
xy
Observation
Spherical? proper kpc
200 kpc
Faucher-Giguere+11
200 kpc
Matsuda+11
Subaru / S-Cam Lya Survey at z=3
S-N-LAB1
z=3
Covering Factor
SSA22-Sb1-LAB1
z=4 ~20%
xy
Simulation
Observation
proper kpc
200 kpc
Faucher-Giguere+11
Filamentary?
100
kpc
Matsuda+11
200 kpc
Subaru / S-Cam Lya Survey at z=3
 2.4 sq deg deep Lya imaging survey (Yamada+12)
 12 pointings (SSA22 + 6 surrounding fields, Subaru Deep Field,
GOODS-N, Subaru-XMM Deep Survey Fields)
 1-sigma Lya surface brightness~10-18 erg s-1 cm-2 arcsec-2
 2200 Lyman-alpha emitters (Yamada+12)
 14 giant (>100kpc) Lyman-alpha nebulae (Matsuda+11)
9
Lya Morphology Density Relation?
Field
Protocluster
100%
90%
80%
Fraction
70%
60%
Spherical
Filamentary
50%
40%
30%
20%
10%
0%
-0.5
1
3
Surface Over Density of Lya Emitters
(<5 Mpc)
10
Local Morphology Density Relation
Dressler 80
Fraction
S + Irr
E + S0
Field
Cluster
Surface Density of galaxies
11
Lya Morphology Density Relation?
• Filamentary Lya blobs may relate to disc galaxy
formation via cold streams in the field.
• Spherical Lya blobs may relate elliptical galaxy
formation in hot haloes in proto-cluster.
Fraction
100%
Spherical
Filamentary
80%
60%
40%
20%
0%
-0.5
Over 1Density3
12
Lya Morphology Density Relation?
• Current observations are limited to extremely
bright Lya blobs (only 14 sources!!).
• It is difficult to study the Lya morphologies of
fainter normal galaxies individually.
Fraction
100%
Spherical
Filamentary
80%
60%
40%
20%
0%
-0.5
Over 1Density3
13
Stacking analysis of 2200 LAEs
20”
150kpc
2.5<d<5.5
1.5<d<2.5
0.5<d<1.5
-1<d<0.5
100 kpc
Lya
2.5<d<5.5
1.5<d<2.5
0.5<d<1.5
-1<d<0.5
100 kpc
Cont
High
Low
LAE surface density (5 Mpc/h smoothing)
14
The Lya radial
profile of the
field LAEs has a
steeper slope.
8m 10hrs
Do the field LAEs
(and LBGs) also
have filamentary
CGM structure?
30m 10hrs If so, TMT will be
able to detect the
Lya emitting
filaments around
LAEs and LBGs.
15
Summary
1) Subaru / S-Cam survey shows a hint of Ly-alpha
morphology-density relation at high-z.
2) Current observations are limited to extremely bright
Lya sources.
3) TMT will be able to study the morphology of the circum
galactic medium of more normal galaxies at high-z.
16
Conclusion
• Ly-alpha imaging is a promising way to study
gaseous structure around high-z galaxies.
• Subaru / S-Cam survey shows a hint of Lyalpha morphology-density relation at high-z
but the survey is limited to extreme cases.
• TMT will be able to observe the gaseous
structure around more normal galaxies.
17
Summary
1) Subaru / Suprime-Cam survey at z=3 shows a hint of
Lyman-alpha morphology density relation.
2) Filamentary Lya nebulae are found in the field, while
spherical nebulae are dominant in overdense regions.
3) Filamentary nebulae may relate to disc formation via
cold streams in the field while the spherical nebulae
may relate to spheroid formation in hot haloes in the
proto-cluster.
18
All UV-continuum selected galaxies at z=2-3
have diffuse extended Lya halos
Steidel+11
20”
150kpc
Lya
Current survey threshold
Radial profile of stacked
Lya image of 92 LBGs at z=2-3
Surface brightness threshold
~10-19 erg s-1 cm-2 arcsec-2
But the data are from
galaxy over-densities
What determines Lya spatial extent?
LAE surface density
(5 Mpc/h smoothing)
Low
High
Study Lya halos using 2128 LAEs
at z=3.1 as a function of
environment and UV luminosity
(Matsuda+12)
Bright
Faint
Central UV Luminosity
20
Future Subaru HSC Survey
•
•
•
•
•
Hyper Suprime-Cam (1.5 deg diameter)
Subaru Strategic Program (300 nts in 5yrs)
Survey starts from Spring 2014
Including Deep z=2-7 Lya imaging in ~30 sq deg
http://www.naoj.org/Projects/HSC/surveyplan.html
Subaru Telescope
8.2 m
+ Hyper Suprime-Cam
90 arcmin diameter
+
Narrow-band filter
60 cm diameter
21
29
1000
0.9
25.53
27.59
25.00
27.39
126
BGg
24
3.7
26.19
25.31
23.05
24.18
8
face) over-densit ies calculat ed by smoot hing the LAE spat ial dist rib
comoving Mpc).
es (AB) measured wit h 2 diamet er apert ure phot omet ry.
des (AB) measured wit h isophot al apert ures det ermined on t he
csec− 2 (or 8 × 10− 20 erg s− 1 cm− 2 arcsec− 2 ).
e Lyα equivalent widt hs from t he 2 diamet er apert ure phot omet ry.
e Lyα equivalent widt hs from t he isophot al apert ure phot omet ry.
met ers assuming a surface bright ness profile of S(r ) = Cn exp(− r / r n ),
ec− 2 and r n is a scale lengt h.
Exponential fitting
n t he SSA22 prot oclust er from St eidel et al. (2003).
.5< <2.5
0.5< <1.5
1< <0.5
21<BV<25
25<BV<26
22
20”
150kpc
21<BV<25
25<BV<26
26<BV<27
Pr
100 kpc
Lya
21<BV<25
27<BV<29
25<BV<26
26<BV<27
27<BV<29
100 kpc
Cont
Bright
Faint
Central UV luminosity
23
Pr
Log10 SBLya (erg s-1 cm-2 arcsec-2)
-18
8m NB Imaging (100 hr)
8m Spectroscopy (100 hr)
-19
30m NB Imaging (100 hr)
30m Spectroscopy (100 hr)
-20
-21
2
3
4
Redshift (z)
5
6
24
apert ure phot omet ry.
of S(r ) = Cn exp(− r / r n ), where Cn is a const ant in unit s of 10− 18 er
Exponential fitting
. (2003).
Exponential scale length
21<BV<25
26<BV<27
Cont
27<BV<29
Protocluster L
100 kpc
Ly
21<BV<25
nd
25<BV<26
Low
25<BV<26
26<BV<27
High
LAE surface density
Mpc/hsample.
smoothing)
prot oclust er (5LBG
T he
27<BV<29
Ly
Protocluster L
100 kpc
Faint
Bright
Central UV luminosity
Cont
25
upper panels are Lyα images
and

similar documents