Towards experiments at the new ELI-NP facility.

Report
The ELI-NP project: Towards
experiments with intense gammabeams *
Dimiter L. Balabanski (ELI-NP/IFIN-HH)
* This work is supported by Extreme Light Infrastructure – Nuclear Physics (ELI-NP) –
Phase I, a project co-financed by the European Union through the European Regional
Development Fund.
1
th
th
NEC’2013 Conference, Sept. 9 – 16 , 2013, Varna, Bulgaria
Where is ELI-NP ?
Bucharest 4km
Φ = 800 m
IFIN-HH
Magurele
ELI-NP
2
Portfolio of the National Institute for
Physics and Nuclear Engineering (IFIN-HH)
• ELI-NP γ-ray facility: two 10 PV lasers and an intense
(1013 γ/s) γ beam of 0.1% bandwidth (under
construction);
• 9 MV Tandem Van-de-Graaff accelerator;
• 3 MV and 1 MV Tandetrons (commissioned in 2012);
• 19 MeV (commissioned in 2013) and 13 MeV cyclotrons;
• Gamma-ray irradiation facility;
• Radioactive waste treatment plant;
• Research reactor (decommissioning project).
IFIN-HH applies for TNA status within the Horizon 2020 ENSAR-2 project
3
ROmanian array for SPectroscopy in HEavy ion Reactions
(ROSPHERE)
Few configurations envisaged:
• Mixed array with 15 50% HPGe detectors with
BGO shields and 10-20 LaBr3(Ce) scintillators
•25 HPGe detectors array
• combined with a plunger device
4
Extreme Light Infrastructure –
Nuclear Physics
5
Time-line of the project
2005: Initiation of the ELI project, aiming at the generation of the most intense light pulses;
2007: The ELI project was identified by ESFRI as top priority research infrastructure for Europe;
November 2007: A 36-month ELI Preparatory Phase project supported by EC;
May 2009: Four main branches of research and applications were identified:
February 1st – 2nd , 2010: ELI-NP Workshop, Bucharest;
March 21st, 2010: ELI-NP White Book (http://www.eli-np.ro/eli-np-presentations.php);
July 4th, 2012: ELI-NP was approved by the Romanian government;
September 18th, 2012: ELI-NP was approved by the European Commission;
2012: Public tender procedures for civil construction, gamma-beam and high-power laser
systems were open;
2017: ELI-NP is expected to start operations !
6
EUROPEAN UNION
GOVERNMENT OF ROMANIA
Structural Instruments
2007-2013
Sectoral Operational Programme
„Increase of Economic Competitiveness”
“Investments for Your Future”
Extreme Light Infrastructure – Nuclear Physics (ELI-NP) - Phase I
Project co-financed by the European Regional Development Fund
Implementation Status
NEC’2013 Conference, Sept. 9th – 16th, 2013, Varna, Bulgaria
7
Milestones of Extreme Light Infrastructure – Nuclear Physics
11 aprilie 2013
12 decembrie 2012
14 iunie 2013
14 iunie 2013
28 msai 2013
6 iunie 2013
23 august 2013
16 iulie 2013
7 August 2013
8
High-power laser source
9
brilliant γ beam (1013 γ/s/100 μm2)
700 MeV LINAC
Parameters of the gamma-beam
10
Science Case
Basic Science
High-field QED
pair production, high-energy γ
rays, birefringence of vacuum
Nuclear Spectroscopy
(γ, γ’), (γ,n), (γ,p), (γ,α), (γ,f),
(e,e’), (e,e γ’), etc.
Nuclear Astrophysics
r-, s- and p-process
nucleosynthesis
Applications
Nuclear Resonance
Fluorescence
control of nuclear materials,
radioactive waste monitoring
Brilliant γ, n, e+ beams
material and life science
Laser acceleration of heavy
ions
http://www.eli-np.ro/documents/ELI-NP-WhiteBook.pdf
11
EXTREME LIGHT INFRASTRUCTURE – NUCLEAR PHYSICS
• 2 arms of 10 PW lasers
• 700 MeV electron beam
• high-brilliance gamma beam of up to 20 MeV  rays
DEFINE EXPERIMENTAL SET-UPS
(25-28.06.2013: TDR workshops for ELI-NP)
ELI-NP White Book
5.4 Stand-alone  /e− Facility for Nuclear Spectroscopy . . . 89
5.5 Stand-alone  /e− Facility for Astrophysics . . . . . . . . . . 116
(,  ’), (,α), (,p), (,n) reactions, giant resonances, etc.
photofission
12
TDR working groups and instruments
Gamma-beam TDR working groups
1. Excitations above the threshold (conveners: Angela Bracco and Muhsin Harakeh
ELI-NP liaision: Dan Filipescu)
2. Nuclear Resonance Fluorescence (convenor: Norbert Pietralla, liaision: Calin Ur)
3. Photofission (conveners: Fadi Ibrahim, Attila Krazsnahorkay, liaision: Dimiter Balabanski)
4. Charged-particle experiments (convener: Moshe Gai, liaision: Ovidiu Tesileanu)
5. Gamma-beam transport (ELI-NP liaision: Calin Ur)
6. Positron beams (ELI-NP liaision: Cristian Teorurescu)
Laser-beam TDR working groups
1.
2.
3.
4.
5.
Laser-beam delivery (convener: Gilles Cheriaux, liaision: Daniel Ursescu)
Fission fusion experiments (convener: Markus Roth, liaision: Florin Negoita)
Strong-filed QED (conveners: Paul MacKenna, Dino Jaroszynski, liaision: Edmond Turku)
Combined laser-gamma experiments (convener: Kensuke Homma, liaision: Daniel Ursescu)
Laser control system (ELI-NP liaision: Mihai Cernaianu)
13
Photonuclear reactions
lifetimes:
ps - as
14
Parity measurement from azimuthal distribution
15
16
Experimental areas
17
Instrumentation (gamma beams)
Nuclear structure set-up: modular and very flexible
• high resolution neutron detection
• gamma-ray detection with medium resolution
• high-resolution γ-ray detection (in some cases)
4π high-efficiency ball for cross section measurements
High-resolution γ-ray set-up with a crystal monochromator
• 10 eV beam resolution
• combined with a total absorption spectrometer
NRF set-up
• rings of segmented HPGe detectors
• good timing detectors
Gas-filled fission detector set-up (combined with gamma-ray detectors)
Production of RIB with IGISOL-type technique (not in the baseline project)
Si-strip detector set-up
Gas-filled TPC
18
Bubble chamber
Photo-fission experiments
Physics goals
• High-resolution photofission studies in actinides 
investigation of 2nd, 3rd potential minima, angular and mass
distribution measurements.
• measurements of absolute photofission cross sections:
 (monochromatic photons with variable energy required)
• limited photon source intensity:
 target thickness limited by finite range of fission
fragments (ca. 8 mg/cm2 in uranium)
 multiple target-detector arrays needed
A. Krazsnahorkay, TDR γ-beam WS
GEM (Gas-electron multiplier) position-sensitive detectors
Thick GEM board with 1.6 mm thickness,
1 mm holes, and 1.5 mm pitch size
Experimental areas
23
Let’s see what else we can squeeze from photofission?
In fission fragments share about 200 MeV and have angular momentum
of 20ħ. The nuclear spin ensemble has oblate orientation with respect
to the beam axis. The ions are emitted in a charge state around 20+.
Optional experiments
• High-spin physics of exotic nuclei
• ISOL studies of exotic nuclei
Let’s make an excursion round other laboratories
where nuclear structure studies on fission fragments
are done and find out whether a niche exists ?
Where to look?
ISOL physics
High-spin physics
(1) ISOLDE @ CERN
(2) ALTO @ Orsay
(3) ARIEL @ TRIUMF
(4) CARIBU @ Argonne
(5) LISOL @ Louvain-le-Neuve
(6) IGISOL @ Jyvaskyla
(1) ILL @ Grenoble
(2) Spontaneous fission
experiments @ EUROBALL
and GAMMASPHERE
All these laboratories possess huge expertise.
Is there really a niche to compete?
Ion guides
IGISOL facilities
• Jyvaskyla, Louvain-le-Neuve (p-induced reactions)
• CARIBU @ Argonne (1 Ci Cf source)
• ARIEL (50 MeV e─ bremsstrahlung induced fission)
Usage of different probes results in different isotope
yield distributions.
Main shortcoming of ARIEL is that about 30% of
beam power is deposited in the target.
CARIBU yields
Elements of an IGISOL facility
•
•
•
•
•
Large acceptance ion guide
Laser ion source
Mass separator
Multi-reflection purification trap
Measurement stations
• β-decay station (also β-delayed neutrons)
• collinear laser spectroscopy
• mass measurements
High-spin physics
Is it possible to make inbeam spectroscopy on a
thick fissioning target?
Is it possible to build an
IGISOL photo-fission
facility?
Common decay stations
with laser fusion-fission
experiment: β-decay ,
collinear spectroscopy
and masses
Finally
1. There are many scientific and technical
challenges ahead of us. However, time is short
and we need to find solutions now.
2. ELI-NP is open for collaborations. We are
building a user community. Formal
collaborations to be established through MoUs.
3. Cooperation between nuclear and laser
physicists needs to be established, e.g. first unify
the language (!)
39
40

similar documents