PPT Presentation

Report
I.B Soil Conservation Systems
Rabi H. Mohtar
Professor, Environmental and Natural Resources Engineering
Executive Director, Strategic Projects, Research & Development
Qatar Foundation
[email protected] or [email protected]
July 2013
1
Materials To Be Covered
1.Principles of Soil Physics
2.Sediment Transport
3.Erosion Control
4.Soil Mechanics
5.Slope Stabilization
This review will provide you with an overall
understanding and not necessarily makes you an expert!
I.B Mohtar
2
Sources
1.
2.
3.
Environmental Soil Physics; Hillel; 1998 Hillel (1998)
Essentials of Soil Mechanics & Foundations, 7th ed.; McCarthy;
2007; McCarthy (2007)
Soil and Water Conservation Engineering
a)
b)
4.
5.
6.
7.
8.
4th ed. Schwab, Fangmeier, Elliott, Frevert: Schwab et al (1993)
5th ed. Fangmeier, Elliott, Workman, Huffman, Schwab: Fangmeier et
al (2006)
Design Hydrology & Sedimentology for Small Catchments; Haan,
Barfield, Hayes: Haan et al (1994)
USLE/RUSLE: USDA Agricultural Handbook No. 537 (1978)
Cuenca, R. H. 1989. Irrigation System Design - An Engineering
Approach. Prentice-Hall, Inc., Englewood Cliffs, NJ. 552 pp.
Cuenca (1989).
Ward, Elliot 1995 (Environmental Hydrology, Lewis Publishers).
http://cobweb.ecn.purdue.edu/~abe325/: Mohtar soil and water
resources conservation course.
I.B Mohtar
3
Soil Physics & Mechanics
1. Soil classes and particle size
distributions
2. Basics of soil water
a) Water Content
b) Water Potential
c) Water Flow
3. Soil strength & mechanics
I.B Mohtar
4
Soil Classes & Particle Sizes
Hillel (1998) page 61
I.B Mohtar
5
Soil Classes & Particle Sizes - 2
ISSS classification is easiest
1. Sand 0.02-2.0mm (20-2000μ)
2. Silt 0.002-0.02mm (2-20μ)
3. Clay <0.002mm (<2μ)
I.B Mohtar
6
Soil Classes & Particle Sizes – 3
Soil Textural Triangle
Example 1:
Find the soil texture for
this soil:
 50% sand,
 20% silt
Hillel (1998) page 64
I.B Mohtar
7
Soil Classes & Particle Sizes – 4
Particle size
distribution
Example 2
Draw in a
sandy clay
loam?
Hillel (1998) page 65
I.B Mohtar
8
Soil Structure and Functionality
Clay
particles
Primary Inter-ped
peds
pore space
Primary
mapping
soil
Primary soil
unit
Soil
mapping type
unit
Geomorphological
unit
Pedostructure, primary peds,
primary particles, are functionally
defined and quantitatively
determined using the shrinkage
and potential curve measurement
I.B Mohtar
Horizon
Pedostructure
=
=
Vertical porosity
(cracks, fissures)
+
Pedostructure
Mineral
grains
Interpedal porosity
(macro-porosity)
+
Primary peds
and free
mineral grains
Mohtar (2008)
Clay pore space
Primary ped
=
Clay plasma porosity
(micro-porosity)
+
Primay particles
and pedological features
9
Soil Water Content
0
1. Mt = Ms + Mw + Ma
2. Vt = Vs + Vw + Va
a. t = total, s = solids, w = water, a = air
3. ρb = bulk density = Ms/Vt≈ 1.1-1.4 g/cc (why
dry basis?)
4. ρp = particle density = Ms/Vs ≈ 2.65 g/cc
5. Porosity = (Vw + Va) / Vt ≈ 25-60%
6. ρw = water density = Mw/Vw = 1.0 g/cc
I.B Mohtar
10
Soil Water Content – 2
 Water content wet basis:
Ww = Mw / (Ms + Mw)
 Water content dry basis:
W = mass wetness = Mw / Ms
 Volumetric water content:
θ = Vw/Vt = Vw / (Vs + Vw + Va)
I.B Mohtar
11
Calc.: Soil Water Content
Soil Water
Example 3.
Given:
 Soil with 30% water content dry basis
Find?
 Best guess at equivalent inches of water
in the top foot of soil?
I.B Mohtar
12
Calc.: Soil Water Content – 2
1. Mw / Ms = 0.30
a. Mw = Vw * ρw
b. ρb = Ms / Vt; Ms = Vt * ρb
I.B Mohtar
13
Calc.: Soil Water Content – 3
 Mw / Ms = (Vw * ρw)/(Vt * ρb) = (Vw /
Vt)(ρw / ρb)
 θ = Vw/Vt
 θ *(ρw / ρb) = 0.3; θ = (ρb / ρw) * 0.3
 θ = 0.3 *(1.3/1.0) = 0.39
 0.39 * 1 ft * 12”/ft = 4.7”
I.B Mohtar
14
Soil Water Potential
soil characteristic curve
Hillel (1998) page 157
I.B Mohtar
15
Soil Water Potential – 2
I.B Mohtar
Cuenca (1989) page 58
16
Soil Water Management
Ward, Elliot 1995 (Environmental Hydrology, Lewis Publishers)
I.B Mohtar
17
Soil Water Potential – 3
Fangmeier et al
(2006) page 337
I.B Mohtar
18
Soil Water Potential – 4
Hillel (1998) page 162
I.B Mohtar
19
Calc.: Soil Water Potential
Soil Water Potential
Example 4.
 Given:
Mercury tensiometer




SG = 13.6
Situation as shown
Find:
1. Total potential at point C
2. Is point C above or below
the current water table?
Cuenca, (1989) page 64
I.B Mohtar
20
Calc.: Soil Water Potential - 2
1. Pick datum
2. Add pressures
a. Suction
b. Water depth
c. Gravity
3. T = z + p + pos
a. z = + 80 cm
b. p = ?
c. T = -86cm
d. Point C is above water table. Why?
I.B Mohtar
21
Soil Water Flow
 q = A*K*H/L
 K = (q*L)/(A*H)
 K values
A
H
L
Fangmeier et al (2006) page 261; Schwab et al
(1993) page 359; Haan et al (1994) page 430
I.B Mohtar
q
22
Calc.: Soil Water Flow
Darcy Law Application
Example 5.
 Given:
 Need 50000 gpd through a 1-ft thick
sand filter with K = 8 ft/d, and a total
driving head of 3 ft
 Find?
 Required diameter for circular tank?
I.B Mohtar
23
Calc.: Soil Water Flow – 2
q = A*K*H/L; A = (q*L)/(K*H)
 50000 gal
A  
day

d 
  1 ft
 
 1
4A

  day   1
 
 
  8 ft   3 ft
  1 ft 3
 
  7 . 481 gal

  278 ft 2


 18 ft
I.B Mohtar
24
Soil Erosion and Sediment Yield
 Hillslope erosion
 Channel system erosion
 Sediment delivery to streams
 Sediment transport in streams
 Slope stability
I.B Mohtar
25
Hillslope soil erosion
 Background
 Detachment
Raindrop impact
 By turbulent overland flow
 Runoff

 Transport downslope

By runoff
Schwab et al (1993) pp:91-111; Fangmeier et al (2006) pp:134-156; Haan et al
(1994) pp:238-285
I.B Mohtar
26
Hillslope Soil Erosion Background
At the top of the slope
 Detachment by raindrop impact
 Transport by shallow sheet flow
 Sheet erosion
USDA-NRCS
I.B Mohtar
27
Hillslope Soil Erosion Background - 2
 Lower on slope
 Small flow
concentrations
 Start to cut small
channels
 Rills



Roughly parallel
Head straight downslope
Random formation
USDA-NRCS
 Flow from sheet areas
between rills
 Sheet and rill erosion
I.B Mohtar
28
Hillslope Soil Erosion Background - 3
 Bottom of hillslope
 Ends at
concentrated flow
channel
 Low area in
macrotopography
 “ephemeral
gullies”
I.B Mohtar
USDA-NRCS
29
Hillslope Erosion Factors
 Rainfall erosivity
 Intensity
 Total storm energy
 Soil erodibility
 Topography
 Slope length
 Steepness
 Management
 Reduce local erosion
 Change runoff path
 Slow and spread runoff => deposition
I.B Mohtar
30
USLE/RUSLE
 A = R * K * LS * C * P
 A = average annual soil erosion (T/A/Y)
 R = rainfall erosivity (long empirical units)
 K = soil erodibility (long empirical units)
 R * K gives units of T/A/Y
 LS = topographic factor (dimensionless, 0-1)
 C = cover-management (dimensionless, 0-1)
 P = conservation practice (dimensionless, 0-1)
I.B Mohtar
31
USLE/RUSLE – background
 Empirical approach been in use since 1960
 >10000 plot-years of data
 International use
 Unit Plot basis; LS = C = P = 1
 Near worst-case management
 R from good fit rainfall-erosion
 K from K = A / R
 C and P from studies
 Sub-factors in later versions
I.B Mohtar
32
USLE/RUSLE – approach
 Lookup
 Maps, tables, figures
 Databases
 Process-based calculations
 Show changes over time
 Where don’t have good data
I.B Mohtar
33
R factor – rainfall erosivity
 Maps
Haan et al (1994) pp:251; Haan et al (1994) Appendix 8A; Schwab et al
(1993) 99(SI); Fangmeier et al (2006) pp:143(SI); USDA (1978) pp:1-5
 R(customary SI) = 17.02 * R(customary US)
S4
I.B Mohtar
34
K factor – soil erodibility
 Soil surveys, NASIS, Haan et al (1994) 261-262; USDA 6
 Erodibility nomograph: Haan et al (1994) 255; Schwab et al
(1993) 101; Fangmeier et al (2006) pp144; USDA (1978) pp: 7
 No short-term OM
I.B Mohtar
35
LS – Topography Factor
 New tables & figures
 Haan et al (1994) 264; USDA (1978) 8
 Know susceptibility to rilling
 High for highly disturbed soils
 Low for consolidated soils
I.B Mohtar
36
C – cover-management factor
 Part of normal management scheme
 Lookup: Schwab (1993) 102; Fangmeier et al (2006) pp: 146;
Haan et al (1994) 266; Hillel (1998) Appendix 8; USDA (1978)
9
 It Changes over time
I.B Mohtar
37
C – Cover-Management Factor - 2
 Subfactor approach (RUSLE)
 C = PLU * CC * SC * SR * SM; all 0-1

PLU = prior land use



CC = canopy cover; % cover & fall height
SC = exp(-b * % cover)



roots, buried biomass, soil consolidation
b = 0.05 if rills dominant; 0.035 typical; 0.025
interrill
SR = roughness; set by tillage, reduces over
time
SM = soil moisture; used only in NWRR
I.B Mohtar
38
P – Conservation Practice Factor
 Common practices
 Contouring, strip cropping, terraces
 Change flow patterns or cause
deposition
 Lookup tables
 Schwab (1993) pp:103; Fangmeier et al (2006) pp:146;
Haan et al (1994) pp: 281; USDA (1978) pp:10
I.B Mohtar
39
Calc.: USLE/RUSLE
Example 9:
 Given:
 Materials in handout
 3-Acre construction site near Chicago
 Straw mulch applied at 4 T/A
 Average 20% slope, 100’ length
 Loamy sand subsoil
 Fill (loose soil)
 Find:
 Erosion rate in T/A/Y
I.B Mohtar
40
Calc: USLE/RUSLE – 2
 R = 150 (HO.1)
 K = 0.24 (HO.7)
 LS = 4 (HO.8-high rilling)
 C = 0.02 (HO.9)
 P = 1.0
 A = R * K * LS * C * P = 2.9 T/A/Y
I.B Mohtar
41
Calc: USLE/RUSLE – 2.1
Example 10:
 Given:
 Materials in handout
 16-A site near Dallas, TX
 Silty clay loam subsoil
 Average 50% slope, 75’ length
 Cut soil
 Find:
 By what percentage will the erosion be
reduced if we increase our straw mulch cover
from 40% cover to 80% cover?
I.B Mohtar
42
Calc: USLE/RUSLE – 2.2
 Only thing different is C
 Only subfactor different is SC
 SC = exp(-b * %cover)
 For consolidated soil, b = 0.025
 SC1 = exp(-0.025 * 40%) = 0.368
 SC2 = exp(-0.025 * 80%) = 0.135
 Reduction = (0.368 – 0.135)/0.368 =
63%
I.B Mohtar
43
Sediment Delivery
 USLE/RUSLE for hillslopes
 Erosion
 Delivery
 Erosion critical for soil resource
conservation
 Delivery critical for water quality
 Movement through channel system
I.B Mohtar
44
Sediment Delivery – 2
I.B Mohtar
45
Sediment Delivery – 3
 SDR (Sediment Delivery Ratio)
 Hillslope erosion
 Empirical fit for watershed delivery
 Channel erosion/deposition modeling
 Erosion
 Transport
 Deposition
I.B Mohtar
46
Sediment Delivery Ratio
 Haan et al (1994) pp:293-299
 SDR = SY / HE
 SDR = sediment delivery ratio
 SY = sediment yield at watershed exit
 HE = hillslope erosion over watershed
I.B Mohtar
47
Sediment Delivery Ratio – 2
 Area-delivery relationship
Haan et al (1994) pp:294
I.B Mohtar
48
Sediment Delivery Ratio – 3
 Relief-length ratio
 Relief = elev change along main branch
 Length = length along main branch
Haan et al (1994) page .294
I.B Mohtar
49
Sediment Delivery Ratio – 4
 Forest Service Delivery Index Method
Haan et al (1994) pp:295
I.B Mohtar
50
Sediment Delivery Ratio – 5
 MUSLE (Haan et al (1994) pp: 298 and 298
 Y = 95(Q * qp)0.56 (Ka)(LSa)(Ca)(Pa)




Y = storm yield in tons
Q = storm runoff volume in acre-in
q = peak runoff rate in cfs
K, LS, C, P = area=weighted watershed values
 SDR = 95(Q * qp)0.56/(R * area)

R = storm erosivity in US units
 Routing for channel delivery
I.B Mohtar
51
Calc: SDR
Example 11:
 Given:
 Flow path length in watershed = 4000ft
 Elevation difference = 115ft
 Find?
 SDR
I.B Mohtar
52
Calc.: SDR – 2
 R/L = 115/4000 = 0.029
 From figure SDR = 0.45
I.B Mohtar
53
Channel Erosion-Deposition Modeling
 Process-based small channel models
 Foster-Lane model

Haan et al (1994) pp285-289

Complicated and process-based
 Ephemeral Gully Erosion Model
EGEM
 Fit to Foster-Lane Model results

I.B Mohtar
54
Channel Erosion-Deposition Modeling – 2
 Large-channel models
 Sediment transport
 Channel morphology
I.B Mohtar
55
Sediment Transport
 Settling (Haan et al (1994) pp:204-209)
 Stokes’ Law
 Vs = settling velocity
 d = particle diameter
 g = accel due to gravity
 SG = particle specific gravity
 ν = kinematic viscosity
 Simplified Stokes’ Law
 SG = 2.65
 Quiescent water at 68oF
 d in mm, Vs in fps
I.B Mohtar
2


1 d g
 SG  1 
Vs 

18  

V s  2 . 81  d
2
56
Calc.: Stokes’ Law Settling
Example 12:
 Given:
 ISSS soil particle size classification
 Find:
 Settling velocities of largest sand, silt, and clay
particles
I.B Mohtar
57
Calc.: Stokes’ Law Settling – 2
 ISSS classification
 Largest particles size
 Clay = 0.002mm
 Silt = 0.2mm
 Sand = 2mm
 Vs,clay = 1.12*10-4 fps = 0.04 ft/hr = 0.97 ft/day
 Vs,silt = 0.11 fps = 405 ft/hr = 1.83 mi/day
 Vs,sand = 11.24 fps = 7.66 mph = 184 mi/day
I.B Mohtar
58
Calc.: Stokes’ Law Settling
Example 13:
 Given:
 Stokes’ Law settling
 Find: particles larger than what size can be
assumed to settle 1 ft in one hour?
I.B Mohtar
59
Calc.: Stokes’ Law Settling – 2
 Vs = [(1 ft)/(1 hr)](1 hr/3600s) = 2.778*10-4
fps
 d = (Vs/2.81)1/2 = 0.00994mm
I.B Mohtar
60
BREAK
I.B Mohtar
61
Soil Strength and Mechanics
From McCarthy (1982) pages 233-237,373-379
 Soil stresses
 Normal Stress = Fn/A = σ
 Shear Stress = Ft/A = τ


Fn = normal force
Ft = tangential or shear force
 As normal stress (σ) ↑, sheer stress (τ) to
cause failure (τf)↑ i.e. shear strength ↑
 tan Φ = τf / σ; where Φ = angle of internal
friction
I.B Mohtar
62
Soil strength and mechanics – 2
McCarthy (1982) page 234
I.B Mohtar
63
Calc.: Soil strength
Example 6:
 Given:
 Well-graded sand; density 124 lb/ft3
 Find:
 Ultimate shear strength 6 ft below
surface?
I.B Mohtar
64
Calc.: Soil Strength – 2
 From table 10-1, for well-graded sand, Φ =
32-35o = 33.5o
 Normal stress = (124 lb/ft3)(6 ft) = 744 lb/ft2
 tan Φ = τf / σ;
τf = σ * tan Φ =
τf = 744 lb/ft2 * tan(33.5o) = 492 lb/ft2
I.B Mohtar
65
Footing bearing loads
qult = a1*c*Nc + a2*B*γ1*Nγ + γ2*Df*Nq
total support=soil cohesiveness+ below footing +soil bearing
c = soil cohesion beneath
footer
γ1,, γ2 = effective soil unit
weight above and below
footer
B = footer size term
Nc, Nγ, Nq = capacity
factors
Df = footing depth below
surface
 qdesign = qult / FS
Length/width
B
a1
a2
1 (square)
Width
1.2
0.42
2
Width
1.12
0.45
3
Width
1.07
0.46
4
Width
1.05
0.47
6
Width
1.03
0.48
Strip
Width
1.00
0.50
Circular
Radius
1.2
0.60
McCarthy (1982) page 374-379
I.B Mohtar
66
Footing Bearing Loads – 2
McCarthy (1982) page 375
I.B Mohtar
67
Calc.: Footing Load
Example 7:
Given:
 Strip footing 3 ft wide
 Wet soil with density of 125 lb/ft3
 Angle of internal friction = 30o
 Cohesive strength of 400 lb/ft2
 Use factor of safety of 3
 Find:
 qdesign in lb/ft2
I.B Mohtar
68
Calc.: Footing Load – 2
 a1 = 1.0, a2 = 0.5, B = width = 3’
 γ1 = 125/2 = 62.5 lb/ft3; γ2 = 125 lb/ft3
 c = 400 lb/ft2
 Nc = 30, Nγ = 18, Nq = 20
 400 lb
q ult  (1 . 0 ) 
2
 ft

 62 . 5 lb
 ( 30 )  ( 0 . 5 )( 3 ft ) 
3

 ft

 125 lb
 (18 )  
3

 ft

2
 ( 4 ft )( 20 )  23 , 700 lb / ft

 qdesign = 23,700/3 = 7900 lb/ft2
I.B Mohtar
69
Soil Compaction and Density
 Soil compaction
 Greater strength and reduced permeability
 Dependent on water content dry soil cannot be
compacted well
 Proctor test
 Pack soil into mold with pounding at various
moistures. Find soil moisture for maximum
compaction and density.
 Modified Proctor > 56000 ft-lbs of energy
exerted.
I.B Mohtar
70
Slope Stability & Failure
Possible Forms of Failure
McCarthy (1982) page 437-455
McCarthy (1982) page 440
I.B Mohtar
71
Slope stability & failure – 2
 Terms
 β=max. slope angle before sliding
 Φ=angle of internal friction
 Cohesionless soil
 tan(β) = tan(Φ)
 Saturated: tan(β) = (1/2)tan(Φ)
I.B Mohtar
72
Slope Stability & Failure – 3
 Cohesive soil
 γ*z*sin(β)*cos(β) = c + σ*tan(Φ)
z
= assumed depth
 c = cohesive force
 σ = effective compressive stress
 Rotational or sliding block
I.B Mohtar
73
Slope Stability & Failure – 4
For clay soil
For soil with cohesion and internal friction > 0
McCarthy (1982) page 474
I.B Mohtar
74
Slope Stability & Failure – 5
Ns = c / (γ * Hmax)
c = cohesion force
γ = soil unit weight
Hmax = max depth without sliding
I.B Mohtar
75
Calc.: Slope Stability
Example 8:
 Given:
 Cohesion strength = 500 lb/ft2
 Unit weight = 110 lb/ft3
 Slope steepness = 50o
 Internal friction angle = 15o
 Find:
 Max. slope height
I.B Mohtar
76
Calc.: Slope Stability – 2
 Fig. b, φ = 15o, i = 50o
 Hmax = c / (γ * Ns) =
(500 lb/ft2)(1ft3/ 10)(1/ 0.095) =
48 ft
I.B Mohtar
77
Materials Covered
 Principles of Soil Physics
 Sediment Transport
 Erosion Control
 Soil Mechanics
 Slope Stabilization
I.B Mohtar
78
Thank You and Best Luck
I.B Mohtar
79

similar documents