presentacion Marisa junio 2014

Report
Síntesis
Reunión grupo, Junio 2014
Total Synthesis of (±)-Distomadines A and B
Alexandre E. R. Jolibois , William Lewis , and Christopher J. Moody *
School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
Org. Lett., 2014, 16 (4), pp 1064–1067
The total synthesis of distomadines A and B, two structurally unique tetracyclic quinolines, is
described. The route features a three-step process to access the pyranoquinoline butenolide
rings via a Suzuki cross coupling of a 5-bromo-4-methoxycarbonylmethoxyquinoline with a
vinyl boronate, followed by an α-ketohydroxylation and double cyclization by intramolecular
aldol condensation and lactonization. Subsequent manipulation of the side chain to introduce
the guanidine fragment completed the synthesis of distomadine B, whereas the distomadine
A congener resulted from decarboxylation of a late-stage intermediate.
Síntesis
Reunión grupo, Junio 2014
Chris Moody is Sir Jesse Boot Professor of Chemistry and Head of Organic Chemistry at the University of
Nottingham. He is a Mancunian and was educated at Manchester Grammar School and King's College, London,
before carrying out his PhD research at the University of Liverpool under the supervision of Charles Rees
investigating the synthesis and reactions of nitrogen-sulfur ylides.
He spent a postdoctoral year at the ETH in Zürich working with Albert Eschenmoser on the
stereochemistry of 1,4-elimination reactions before taking up a post in industry at Roche.
In 1979 he was appointed to a lectureship at Imperial College, London, and was promoted
to a readership in 1989. In 1990 moved to the chair of organic chemistry at Loughborough
University, and in 1996 he was appointed Professor of Organic Chemistry at the University
of Exeter. He moved to his current post in Nottingham in August 2005.
He has published over 390 papers and his work has been recognised with several awards including the RSC
Hickinbottom Fellowship and Corday Morgan Medal (both in 1986), the Tilden Medal and Lectureship (2000-2001),
the Adrien Albert Medal and Lectureship (2001), an EPSRC Senior Research Fellowship (2000-2005), the Royal
Society of Chemistry Award for Synthetic Organic Chemistry (2006), the Pedler Lectureship (2008), the Novartis
International Lectureship (2010-2011), and the Royal Society of Chemistry Charles Rees Award (2012).
Prof Keith Jones (ICR); Prof Chris Moody (Uni of Nottingham, recipient
Of the RSC Charles Rees Award); Dr David Rees (Astex Pharmaceuticals)
Síntesis
Reunión grupo, Junio 2014
Chris Moody is Sir Jesse Boot Professor of Chemistry and Head of Organic Chemistry at the University of
Nottingham. He is a Mancunian and was educated at Manchester Grammar School and King's College, London,
before carrying out his PhD research at the University of Liverpool under the supervision of Charles Rees
investigating the synthesis and reactions of nitrogen-sulfur ylides.
He spent a postdoctoral year at the ETH in Zürich working with Albert Eschenmoser on the
stereochemistry of 1,4-elimination reactions before taking up a post in industry at Roche.
In 1979 he was appointed to a lectureship at Imperial College, London, and was promoted
to a readership in 1989. In 1990 moved to the chair of organic chemistry at Loughborough
University, and in 1996 he was appointed Professor of Organic Chemistry at the University
of Exeter. He moved to his current post in Nottingham in August 2005.
He has published over 390 papers and his work has been recognised with several awards including the RSC
Hickinbottom Fellowship and Corday Morgan Medal (both in 1986), the Tilden Medal and Lectureship (2000-2001),
the Adrien Albert Medal and Lectureship (2001), an EPSRC Senior Research Fellowship (2000-2005), the Royal
Society of Chemistry Award for Synthetic Organic Chemistry (2006), the Pedler Lectureship (2008), the Novartis
International Lectureship (2010-2011), and the Royal Society of Chemistry Charles Rees Award (2012).
Jesse Boot, 1st Baron Trent (1850 –1931) transformed The Boots Company, founded by his father,
John Boot (1815-1860) into a national retailer, which branded itself as "Chemists to the Nation",
before he sold his controlling interest to American investors in 1920.
Boot was a great benefactor to the City of Nottingham. He donated land for the new University
College at Highfields, now the University of Nottingham, which opened in 1928 and was presented
with the Freedom of the City of Nottingham in 1920.
Boot was knighted in 1909, created a baronet in 1917,and announced in the New Year's Honours
of 1929 was elevated to the peerage, and created Baron Trent, of Nottingham in the County of
Nottingham on 1929.These latter honours probably owed as much to his solid support of the
Liberal Party as to his philanthropy to the city of his birth. He died in Jersey in 1931.
The Sir Jesse Boot Chair in Chemistry at the University of Nottingham was named in his honour.
http://www.allianceboots.com/our-history.aspx
Síntesis
Reunión grupo, Junio 2014
Total Synthesis of (±)-Distomadines A and B
Alexandre E. R. Jolibois , William Lewis , and Christopher J. Moody *
School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
Org. Lett., 2014, 16 (4), pp 1064–1067
•
Aisladas de ascidian Pseudodistoma aureum , New Zealand. (Copp and col., Tetrahedron Lett. 2003, 44, 3897-3899)
•
Distomadina B: se aisló con 2′-deoxyadenosine (mezcla 1:1).
•
Distomadina A se elucidó por RMN (a falta de la estereoquímica absoluta)
•
Poseen una rara estructura tetracíclica de pirano[2,3,4-de]quinolina unida a una butenolida.
Síntesis
Reunión grupo, Junio 2014
Total Synthesis of (±)-Distomadines A and B
Alexandre E. R. Jolibois , William Lewis , and Christopher J. Moody *
School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
Org. Lett., 2014, 16 (4), pp 1064–1067
•
Solo se conoce un compuesto sintético relacionado con alcaloides de aaptamina con núcleo de piranoquinolina
(Abbiati and col., J. Org. Chem.. 2012, 77, 10461-10467)
Síntesis
Reunión grupo, Junio 2014
Total Synthesis of (±)-Distomadines A and B
Alexandre E. R. Jolibois , William Lewis , and Christopher J. Moody *
School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
Org. Lett., 2014, 16 (4), pp 1064–1067
•
El ácido 2-quinolina carboxílico presente en la distomadina B es poco frecuente en productos naturales marinos:
Primer ejemplo: ácido 3,4-dihidroxiquinolina 2-carboxílico aislado de Aplysina aerophoba en los años 70
OH
HO
HO2C
N
Síntesis
Reunión grupo, Junio 2014
Total Synthesis of (±)-Distomadines A and B
Alexandre E. R. Jolibois , William Lewis , and Christopher J. Moody *
School of Chemistry, University Park, University of Nottingham, Nottingham NG7 2RD, U.K.
Org. Lett., 2014, 16 (4), pp 1064–1067
•
El ácido 2-quinolina carboxílico presente en la distomadina B es poco frecuente en productos naturales marinos:
Los ácido quinurénico y xanturénico son dos de los ejemplos más conocidos de productos naturales con esqueleto
de ácido 2-quinolinacarboxílico
Ácido quinurénico metabolito del
triptófano con fuerte actividad
biológica sobre el sistema nervioso
HO2C
OH
HO2C
N
N
OH
Ácido
xanturénico
induce
gametogenesis del Plasmodium
falciparum, (parásito de la
malaria).
Se encuentra en el intestino del
mosquito Anopheles
Síntesis
Reunión grupo, Junio 2014
O
Ph
O
MeO2C
CO2Me
MeOH
H2N
MeO2C
(94%)
O
MeO2C
Ph
Ph
O
245ºC
N
H
Ph
O
Ph
MeO2C
(70%)
N
H
K2CO3 / DMF Cl
CO2Me
(97%)
CO2Me
CO2Me
Br
O
O
CH3CN
N
(86%)
CH2Cl2
MeO2C
MeO2C
10% Pd/C
THF
N
X
MeO
O
O
Br
O
O
O
Cl
MeO2C
..
NH2
OMe
Ph
OMe
O
O
O
..
N
H
Ph
N
Ph
O
O
N
O
(76%)
Ph
C17H18BrNO7
EOMCl =
H2
OH
EOMCl
(95%)
iPr2NEt
CO2Me
O
O
NBS
OH
MeO2C
CO2Me
CO2Me
Síntesis de Conrad-Limpach modificada:
• Adición de Michael al DMAD
• Ciclación al elevar la temperatura
N
H
Me
Síntesis
Reunión grupo, Junio 2014
O
Ph
O
MeO2C
CO2Me
MeOH
H2N
MeO2C
(94%)
Ph
O
MeO2C
Ph
O
245ºC
N
H
Ph
O
Ph
MeO2C
(70%)
N
H
K2CO3 / DMF Cl
CO2Me
(97%)
CO2Me
CO2Me
Br
O
O
CH3CN
N
(86%)
CH2Cl2
O
NBS
OH
MeO2C
CO2Me
H2
OH
MeO2C
10% Pd/C
THF
N
(76%)
EOMCl
(95%)
iPr2NEt
O
MeO2C
Ph
N
CO2Me
O
MeO2C
X
Cl
Br
O
Ph
O
O
C17H18BrNO7
CO2Me
CO2Me
Ph
O
O
O
O
N
Me
EOMCl =
O
Cl
N
H
Me
N
_
Ph
O
Me
N
Síntesis
Reunión grupo, Junio 2014
O
Ph
O
MeO2C
CO2Me
MeOH
H2N
MeO2C
(94%)
Ph
O
MeO2C
Ph
O
245ºC
N
H
Ph
O
Ph
MeO2C
(70%)
N
H
K2CO3 / DMF Cl
CO2Me
(97%)
CO2Me
CO2Me
Br
O
O
CH3CN
N
(86%)
CH2Cl2
O
NBS
OH
MeO2C
CO2Me
H2
OH
MeO2C
O
10% Pd/C
THF
N
MeO2C
(76%)
EOMCl
(95%)
iPr2NEt
Ph
N
CO2Me
O
MeO2C
X
CO2Me
Br
O
O
O
C17H18BrNO7
Br
CO2Me
Cl
O
Br
OH
O
CO2Me
O
O
O
N
Me
EOMCl =
O
Cl
N
Me
N
O
Br
Me
N
Síntesis
Reunión grupo, Junio 2014
CO2Me
•
•
Br
O
•
MeO2C
•
N
•
•
•CO2Me
•
•
•
•
MeO C
2
O
O
Br
•
•
•
•
• • •
N
δH (400 MHz; CDCl3):
8.22 (1 H, d, J 9.4), 7.74 (1 H, d, J 9.4), 7.49 (1 H, s),
5.45 (2 H, s), 4.96 (2 H, s),
4.07 (3 H, s), 3.87 (3 H, s),
3.85 (2 H, q, J 7.1), 1.25 (3 H, t, J 7.1)
•
O
•
•
O
•
O
•
δC (100 MHz; CDCl3):
167.7 (C), 165.6 (C), 161.5 (C), 154.3 (C),
147.0 (C), 146.2 (C), 122.1 (C), 104.6 (C),
131.6 (CH), 120.4 (CH), 102.3 (CH),
94.1 (CH2), 65.2 (CH2), 65.1 (CH2),
53.4 (Me), 52.6 (Me),15.1 (Me)
Síntesis
Reunión grupo, Junio 2014
OH
Me
Me
Me
Me
BOMCl CH2Cl2 (89%)
iPr2NEt 0º
t.a.
O
O
B
H
PinBH
O
O
Et3N
Cp2Zr·HCl
Ph
50ºC
(78%)
CO2Me
X
O
O
O B
MeO2C
OBOM
Br
Intercambio
Vinilo-hidruro
BOMCl =
Ph
O
Cl
PinBH = 4,4,5,5-Tetrametil-1,3,2-dioxaborano
OBOM
CO2Me
O
O
N
O
Pd(OAc)2, SPhos
K3PO4, THF/H2O
MeO2C
O
N
(93%)
Zr-Mediated hydroboration: stereoselective synthesis of vinyl boronic esters
Y. D. Wang et al. Tetrahedron Lett. 2005, 46, 8777-8780
Inserción del
alquino
O
Reactivo de Schwartz
Hidrocloruro de zirconoceno
o zirconoceno cloruro hidruro
Síntesis
Reunión grupo, Junio 2014
OBOM
CO2Me
O
O
MeO2C
O
N
KMnO4
acetona/H2O
(83%)
AcOH
O
O
O
Y
O
O
NaH, THF
O
C28H27NO9
MeO2C
OBOM
CO2Me
OBOM
(23%)
N
MeO2C
O
HO
O
MezclaOH(1:1) de dos regioisómeros
O
O
+ medio básico
Interconvertibles
en
N
MeO2C
O
O
OBOM
O
O
OH
O
MeO2C
MeO2C
~H
HO
O
O
O
OBOM
O
O
N
OBOM
CO2Me
CO2Me
MeO2C
O
HO
O
O
O
N
N
NaH, THF
N
O
OH
O
CO2Me
O
OBOM
CO2Me
Pirano[2,3,4-de]quinolina
tetracíclica
OBOM
CO2Me
O
MeO2C
N
O
Síntesis
Reunión grupo, Junio 2014
OBOM
CO2Me
O
O
MeO2C
O
N
KMnO4
acetona/H2O
(83%)
AcOH
O
O
O
Y
O
O
O
(23%)
N
Pirano[2,3,4-de]quinolina
tetracíclica
O
O
O
MeO2C
OMe
O
O
O
MeO2C
N
+
O
MeO
O
OBOM
O
OBOM
O
MeO2C
N
O
O
O
MeO2C
O
-H2O
O
O
N
O
OBOM
OBOM
O
O
MeO2C
O
N
-H2O
Condensación aldólica + lactonización
OH
O
O
N
MeO
O
O
O
OH
~H
O
O
MeO2C
NaH, THF
OH
HO
O
N
OBOM
OBOM
CO2Me
OH
NaH, THF
C28H27NO9
MeO2C
OBOM
CO2Me
OBOM
O
O
O
MeO2C
N
O
Síntesis
Reunión grupo, Junio 2014
O
5.38 d, 10.3
3.87 td, 9.7, 4.1 5.35 d, 10.3
3.83-3.82 m
5.78 dd,
8.9, 1.9
O H
•
N
O
O
H H
O
O
7.54 (s)
2
•
7.43-7.22
(5 H, m)
2.74 dddd, 14.7, 9.7, 4.1, 1.9
1.86 ddt, 14.7, 8.9, 4.1
O
•
MeO C
H H
HH
8.05
(d, 9.6)
•
7.72
(d, 9.6)
δH (400 MHz; CDCl3):
8.05 (1H, d, J 9.6), 7.72 (1 H, d, J 9.6), 7.54 (1 H, s), 7.43-7.22 (5 H, m), 5.78 (1H, dd, J 8.9, 1.9), 5.38 (1H,
d, J 10.3), 5.35 (1H, d, J 10.3), 4.77 (2 H, s), 4.58 (2 H, s), 4.04 (3H, s), 3.87 (1 H, td, J 9.7, 4.1), 3.83-3.72
(3 H, m), 2.74 (1 H, dddd, J 14.7, 9.7, 4.1, 1.9),1.86 (1 H, ddt, J 14.7, 8.9, 4.1), 1.18 (3 H, t, J 7.0).
Síntesis
Reunión grupo, Junio 2014
O
• •
• •
• O
•
• O
• O
• • •
•
O
• • • O O
•
• • •
•
•
•
•
MeO2C
N
•
δC (100 MHz; CDCl3):
164.7 (C), 163.2 (C), 159.8 (C), 149.4 (C), 148.0 (C), 145.4 (C), 138.1 (C), 137.5 (C), 135.9 (C), 131.9
(CH), 128.3 (CH), 127.7 (CH), 127.6 (CH), 121.2 (CH), 121.0 (C), 109.5 (C), 105.5 (CH), 94.6 (CH2),
93.6 (CH2), 77.4 (CH), 69.4 (CH2), 65.2 (CH2), 63.5 (CH2), 53.2 (Me), 34.6 (CH2), 14.9 (Me).
Síntesis
Reunión grupo, Junio 2014
O
O
Pd negro
EtOAc, MeOH
HCO2H
O
O
O
MeO2C
O
O
OBOM
OH
1,2-di-BOC-guanidina
DIAD, PPh3
THF,
O
O
O
(85%)
N
MeO2C
iPrO
N
O
N
H
O
OiPr
:PPh3
(97%)
N
O
N
iPrO
N
N
OiPr Boc
O
O + PPh3
O
NH2
H
N
NBoc
H
iPrO
O
MeO2C
C17H14N4O6·2HCl
N
·HCl
N
NaOH 0º
THF, H2O
t.a.
(94%)
N
Boc
N
_
OiPr
+ PPh3
NH2
O
NBoc
NBoc
O
O
Boc
NHNH
2 2
N
N Boc
R
NBoc
O
O
(89%)
H
iPrO
Condiciones de Mitsunobu
N
O
O PPh3
HO2C
O
N
OiPr
H
N
R O
+ PPh3
O
O C
N N
C O
HN
R
HN
R
O
O
DIAD: Azodicarboxilato de diisopropilo
O
+
H
O
+
OH
+
+
HN
O
R
H
H
+R
N
OH
O
O
H
NH
t-BuO2C
N
H
N
H
CO2t-Bu
1,2-di-BOC-guanidina
NH2
O
O
R O HCl
H
1,4-dioxano
OH
N
Boc
O
O
N
NH2·HCl O
N
H
()D-B
HO2C
NBoc
O
O
+
O C O
+
H2N R
Síntesis
Reunión grupo, Junio 2014
O
OBOM
NaOH
THF, H2O
O
O
O
O
O
0º
MeO2C
O
O
O
N
O
O
Ph2O
O
O
O
t.a.
HO2C
N
(86%)
N
Pd negro
EtOAc, MeOH
HCO2H
HN
O
N
H
NBoc
O
NH2·HCl
O
()D-A
HCl
1,4-dioxano
C16H14N4O4·2HCl
(77%)
O
N
·HCl
N
Boc
O
OH
O
O
O
(97%)
O
OBOM
O
-CO2
_
+
N
H
H
OBOM
O
O
N
N
O
O
OBOM
O
OH
O
O
O
+
1,2-di-BOC-guanidina
DIAD, PPh3
PhMe,
O
O
O
O
O
(73%)
O
NH2
N
O
O
190ºC
(90%)
O
OBOM
OBOM
O
O
H
N
O
O
Estructura
Reunión grupo, Junio 2014
Estructura
Reunión grupo, Junio 2014
Algunos picos en EM:
270/272
242/244
106
78
Estructura
Reunión grupo, Junio 2014
Estructura
Reunión grupo, Junio 2014
C15H13BrN2O3
13C
RMN
11 Csp2
d (ppm)
198.21
152.52
148.96
138.23
137.14
132.08
129.34
127.67
121.96
121.70
79.53
40.56
38.79
IDH = 15 – 14/2 + 2/2 + 1 = 10
1696 cm-1 nC=O
IR
1550 y 1369 cm-1 nNO2
C=O
C
CH
C
CH
CH (x 2)
CH (x2)
CH
CH
C
CH2
CH2
CH3
TOTAL: C15H13O
FALTA:
Br  Sustituyente
2N
20
3 Csp3
N
N + NO2
Estructura
Reunión grupo, Junio 2014
X
Estructura
Reunión grupo, Junio 2014
C15H13BrN2O3
1H
RMN
8.673
0.003
8.670
0.016
8.667
8.664
0.026
8.657
8.654
8.652
8.649
d
e
8.673
0.003
8.670
0.006
8.667
8.664
0.016
8.657
8.654
0.005
8.652
8.649
8.004
0.003
8.001
0.004
7.997
8.66ppm
1H, ddd
4.8, 1.7, 0.9Hz
0.026
7.978
7.975
7.861
0.005
7.856
7.49ppm
1H, ddd
7.8, 4.8, 1.4Hz
Tablas
c
da = 8.59
b
db = 7.38
dc= 7.75
a
N
3J = 4-6
ab
3J = 0-2.5
ac
3J = 0-2.5
ad
3J = 0-0.6
ae
3J = 7-9
bc
3J = 0.5-2
bd
0.003
7.99ppm
1H, dt
7.8, 1.0Hz
7.971
0.026
7.836
0.006
7.830
0.026
7.83ppm
1H, td
7.8, 1.7Hz
7.810
7.804
7.83ppm
(1H, td, 7.8, 1.7Hz)
H
7.99ppm
(1H, dt, 7.8, 1.0Hz)
7.47ppm (2H, d, 8.5Hz)
7.26ppm (CDCl3)
7.20ppm (2H, d , 8.5Hz)
H
H
7.49ppm
(1H, ddd, 7.8, 4.8, 0.9Hz)
R'
R
H
8.66ppm
(1H, ddd, 4.8, 1.7, 0.9Hz)
N
R
AA’XX’
Estructura
Reunión grupo, Junio 2014
X
Estructura
Reunión grupo, Junio 2014
Estructura
Reunión grupo, Junio 2014
C15H13BrN2O3
1H
Los H de los 2 CH2
son diastereotópicos ()
Hay 5 señales en 1H RMN de 1H cada una
Que corresponden en 13C RMN a CH2 CH2 y CH
RMN
H W
4.804
0.0215
4.783
0.0415
4.763
4.741
4.77ppm
1H, dd
12.3, 6.5Hz
4.682
0.028
4.654
0.042
4.640
4.612
4.65ppm
1H, dd
12.6, 8.4Hz
3.855
0.024
3.831
0.061
3.794
3.770
2J
4.267 0.023
4.244
4.221
4.2160.023
4.193
4.170
2J
0.061
3.59ppm
1H, dd
18.3, 6.9Hz
H
gem = 12.3 Hz
0.051
gem
= 18.3 Hz
4.22ppm
1H, dt
15.3, 6.9Hz
H
*

3.81ppm
1H, dd
18.3, 7.2Hz
3.634
3.611 0.023
3.573
3.550
H
Y
H
X
Teórico:
4.22ppm (1H, dddd)
8.4, 7.2, 6.9, 6.5Hz (Jmedia  7.3Hz)
Experimental:
4.22ppm (m)

Estructura
Reunión grupo, Junio 2014
C15H13BrN2O3
Tenemos:
H W
R'
N
H
R
R''
H
H
C O
H
Y
NO2
Br
X
• El NO2 no está en la piridina ni el anillo bencénico (los H aromáticos salen a 7.47 y 7.20)
• Un CH2 está muy desapantallado (dC=79.53 y dH=4.77 y 4.65)  estará unido al NO2
• El Br será un sustituyente del anillo bencénico (Csp2 a 121.7ppm)
H W
R'
N
R
H
Br
H
H
H
NO2
X
C O
Estructura
Reunión grupo, Junio 2014
C15H13BrN2O3
4 Posibilidades:
7.78
NO2
153.6
N
•
C
127.4 Br
•
•
137.8
163.5
7.38
H
H 7.01
O
120.3
H
N
•
O2N
•
•
C 139.2
Br
H
7.51
O
Los Csp2 cuaternarios en el espectro están a: 152.52, 138.23 y 121.70
Y los H del anillo bencénico a: 7.47 y 7.20
7.78
O2N
120.3 Br
153.6
N
•
C
O
•
•
147.7
H 7.01
NO2
163.5
7.38
H
N
•
120.3
H
•
•
C 139.2
O
Br
H
7.51
Estructura
Reunión grupo, Junio 2014
Br
NO2
N
F. a
C
•O
+
- CO
N
F. a
NO2
Br
C
270/272
EM
+O
O
N
C
O
240/242
•O
+
- CO
F. a
C
Br
+
C
Br
N
78
NO2
- CO
+
N
+
106
Br
NO2
+
O
C+
N
C+
N
O
C
N
+
O
78
106
NO2
+
F. a
Br
Br
+
O
C
+O
NO2
270/272
Br
- CO
C
NO2
+
NO2
240/242
Estructura
Reunión grupo, Junio 2014
C15H13BrN2O3
2 Posibilidades:
7.78
NO2
153.6
N
•
C
•
137.8
127.4 Br
•
163.5
7.38
H
H 7.01
O
120.3
H
N
•
O2N
•
•
C 139.2
Br
H
7.51
O
Los Csp2 cuaternarios en el espectro estan a: 152.52, 138.23 y 121.70
Y los H del anillo bencénico a: 7.47 y 7.20
7.78
O2N
120.3 Br
153.6
N
•
C
O
•
•
147.7
H 7.01
NO2
163.5
7.38
H
N
•
120.3
H
•
•
C 139.2
O
Br
H
7.51
Estructura
Reunión grupo, Junio 2014
HMBC: Heteronuclear Multiple-Bond Correlation
C15H13BrN2O3
N
•
O2N
H
Br
C
H
O
•
Acoplamientos C-H a mas de 1 enlace 2JC-H y 3JC-H
•
1J
C-H
señales de cruce dobles
O2N
H
N
Br
H
H
C
H H
O
H
H
H
Jgem = 18.3 Hz
Br
H H
Br
H H
N
•
N
H
C
O
H
NO2
H
C
O
H
H
NO2
Reunión grupo, Junio 2014

similar documents